【題目】已知函數(shù)f(x)=,g(x)=xlnx.
(Ⅰ)若函數(shù)g(x)的圖象在(1,0)處的切線l與函數(shù)f(x)的圖象相切,求實數(shù)k的值;
(Ⅱ)當k=0時,證明:f(x)+g(x)>0;
【答案】(1)(2)見解析
【解析】
(Ⅰ)根據(jù)導函數(shù)的幾何意義求得函數(shù)g(x)的圖象在(1,0)處的切線l的方程,將其方程與函數(shù)f(x)的解析式聯(lián)立,得到關(guān)于x的一元二次方程,由條件可知此方程有一個解,判別式等于0,可求得實數(shù)k的值;(Ⅱ)證法一:當k=0時,構(gòu)造函數(shù)F(x)=f(x)+g(x)= ,求導判斷函數(shù)F(x)在(0,+∞)上的單調(diào)性,進而得其最小值,判斷最小值大于0即可。證法二:對于函數(shù)g(x)=xlnx,求導判斷其單調(diào)性,可求其最小值,當k=0時, ,配方可求其最小值。進而可得f(x)+g(x)>
,可證明要證不等式。
(Ⅰ)g(x)的導數(shù)g′(x)=1+lnx,斜率為g′(1)=1,切點為(1,0),則直線l:y=x﹣1,
聯(lián)立y=x2+(k﹣1)x﹣k+,可得x2+2(k﹣2)x﹣2k+5=0,
由l與f(x)的圖象相切,可得△=4(k﹣2)2﹣4(5﹣2k)=0,解得k=1±;
(Ⅱ)證法一:當k=0時,F(x)=f(x)+g(x)=xlnx+x2﹣x+,
F′(x)=lnx+x,x>0,顯然F′(x)在(0,+∞)遞增,
設(shè)F′(x0)=0,即lnx0+x0=0,易得x0∈(0,1),
當x∈(0,x0),F(xiàn)′(x)<0,F(xiàn)(x)遞減,當x∈(x0,+∞),F(xiàn)′(x)>0,F(xiàn)(x)遞增.
F(x)的最小值為F(x0),且為x0lnx0++x02﹣x0+=x0(﹣x0+x0﹣1)+
=﹣x02﹣x0+=﹣(x0+3)(x0﹣1),由x0∈(0,1),F(xiàn)(x0)>0,
故F(x)>0恒成立,即f(x)+g(x)>0恒成立;
證法二:g′(x)=1+lnx,x∈(0,),g′(x)<0,g(x)遞減,
x∈(,+∞),g′(x)>0,g(x)遞增,則g(x)在x=處取得最小值﹣,即g(x)≥,
又k=0時,f(x)=x2﹣x+=(x﹣1)2+1≥1,則f(x)+g(x)>1﹣>0恒成立;
科目:高中數(shù)學 來源: 題型:
【題目】(12分)已知函數(shù) .
(1)若x=2是函數(shù)f(x)的極值點,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若函數(shù)f(x)在 上為單調(diào)增函數(shù),求a的取值范圍;
(3)設(shè)m,n為正實數(shù),且m>n,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了調(diào)查某社區(qū)居民每天參加健身的時間,某機構(gòu)在該社區(qū)隨機采訪男性、女性各50名,其中每人每天的健身時間不少于1小時稱為“健身族”,否則稱其為"非健身族”,調(diào)查結(jié)果如下:
健身族 | 非健身族 | 合計 | |
男性 | 40 | 10 | 50 |
女性 | 30 | 20 | 50 |
合計 | 70 | 30 | 100 |
(1)若居民每人每天的平均健身時間不低于70分鐘,則稱該社區(qū)為“健身社區(qū)”. 已知被隨機采訪的男性健身族,男性非健身族,女性健身族,女性非健身族每人每天的平均健分時間分別是1.2小時,0.8小時,1.5小時,0.7小時,試估計該社區(qū)可否稱為“健身社區(qū)”?
(2)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過5%的情況下認為“健身族”與“性別”有關(guān)?
參考公式: ,其中.
參考數(shù)據(jù):
0. 50 | 0. 40 | 0. 25 | 0. 05 | 0. 025 | 0. 010 | |
0. 455 | 0. 708 | 1. 321 | 3. 840 | 5. 024 | 6. 635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,MN分別是邊長為1的正方形ABCD的邊BCCD的中點,將正方形沿對角線AC折起,使點D不在平面ABC內(nèi),則在翻折過程中,有以下結(jié)論:
①異面直線AC與BD所成的角為定值.
②存在某個位置,使得直線AD與直線BC垂直.
③存在某個位置,使得直線MN與平面ABC所成的角為45°.
④三棱錐M-ACN體積的最大值為.
以上所有正確結(jié)論的序號是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分14分)已知過原點的動直線與圓 相交于不同的兩點,.
(1)求圓的圓心坐標;
(2)求線段的中點的軌跡的方程;
(3)是否存在實數(shù),使得直線 與曲線只有一個交點?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l的參數(shù)方程為為參數(shù),以坐標原點為極點,x軸的正半軸為極軸建建立極坐標系,曲線C的極坐標方程為.
求曲線C的直角坐標方程與直線l的極坐標方程;
Ⅱ若直線與曲線C交于點不同于原點,與直線l交于點B,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地西紅柿從2月1日起開始上市.通過市場調(diào)查,得到西紅柿種植成本(單位:元/)與上市時間(單位:天)的數(shù)據(jù)如下表:
由表知,體現(xiàn)與數(shù)據(jù)關(guān)系的最佳函數(shù)模型是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知角α的頂點與原點重合,始邊與x軸的正半軸重合,終邊過點P(-2,-1).
(1)求cos(2α+)的值;
(2)若角β滿足tanβ=2,求tan(2α+β)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com