若函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)在一個周期內(nèi)的圖象如圖所示,M是這段圖象的最高點,則φ=( 。
A、
π
3
B、
π
4
C、
π
6
D、
π
8
考點:由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:三角函數(shù)的圖像與性質(zhì)
分析:由圖象結(jié)合五點法作圖,可得ω•
π
12
+φ=
π
2
,ω•
π
3
+φ=π,由此求得ω和φ的值.
解答: 解:由函數(shù)的圖象,結(jié)合五點法作圖,可得ω•
π
12
+φ=
π
2
,ω•
π
3
+φ=π,由此求得ω=2,φ=
π
3
,
故選:A.
點評:本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

給出下列兩個結(jié)論:
①若命題p:?x0∈R,x02+x0+1<0,則¬p:?x∈R,x2+x+1≥0;
②命題“若m>0,則方程x2+x-m=0有實數(shù)根”的逆否命題為:“若方程x2+x-m=0沒有實數(shù)根,則m≤0”;
則判斷正確的是( 。
A、①對②錯B、①錯②對
C、①②都對D、①②都錯

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(-2,0),B(2,0),C(0,3),則△ABC底邊AB的中線的方程是( 。
A、x=0
B、x=0(0≤y≤3)
C、y=0
D、y=0(0≤x≤2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方形ABCD(字母順序是A→B→C→D)的邊長為1,點E是AB邊長的動點(可以與A或B重合),則
DE
CD
的最大值是( 。
A、1
B、
1
2
C、0
D、-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=5,anan+1=2n,則
a2
a3
=(  )
A、25
B、
1
25
C、5
D、
5
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓x2+y2+4y=0的半徑和圓心坐標分別為  ( 。
A、圓心為(0,2),半徑為4
B、圓心為(0,-2),半徑為4
C、圓心為(0,2),半徑為2
D、圓心為(0,-2),半徑為2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

桌面上有形狀大小相同的白球、紅球、黃球各3個,相同顏色的球不加以區(qū)分,將此9個球排成一排共有
 
 種不同的排法.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正三棱柱ABC-A1B1C1中,底面邊長是2,側(cè)棱長為4,M,N分別在AA1和CC1上,A1M=CN=1,P是BC中點.
(1)求四面體A1-PMN的體積;
(2)證明A1B∥平面PMN.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在如圖所示的幾何體中,面CDEF為正方形,面ABCD為等腰梯形,AB∥CD,AC=
3
,AB=2BC=2,AC⊥FB. 
(Ⅰ)求證:AC⊥平面FBC;
(Ⅱ)求該幾何體的體積.

查看答案和解析>>

同步練習冊答案