【題目】“微信運(yùn)動(dòng)”是手機(jī)推出的多款健康運(yùn)動(dòng)軟件中的一款,某學(xué)校140名老師均在微信好友群中參與了“微信運(yùn)動(dòng)”,對(duì)運(yùn)動(dòng)10000步或以上的老師授予“運(yùn)動(dòng)達(dá)人”稱號(hào),低于10000步稱為“參與者”,為了解老師們運(yùn)動(dòng)情況,選取了老師們?cè)?月28日的運(yùn)動(dòng)數(shù)據(jù)進(jìn)行分析,統(tǒng)計(jì)結(jié)果如下:
運(yùn)動(dòng)達(dá)人 | 參與者 | 合計(jì) | |
男教師 | 60 | 20 | 80 |
女教師 | 40 | 20 | 60 |
合計(jì) | 100 | 40 | 140 |
(Ⅰ)根據(jù)上表說(shuō)明,能否在犯錯(cuò)誤概率不超過(guò)0.05的前提下認(rèn)為獲得“運(yùn)動(dòng)達(dá)人”稱號(hào)與性別有關(guān)?
(Ⅱ)從具有“運(yùn)動(dòng)達(dá)人”稱號(hào)的教師中,采用按性別分層抽樣的方法選取10人參加全國(guó)第四屆“萬(wàn)步有約”全國(guó)健走激勵(lì)大賽某賽區(qū)的活動(dòng),若從選取的10人中隨機(jī)抽取3人作為代表參加開(kāi)幕式,設(shè)抽取的3人中女教師人數(shù)為,寫(xiě)出的分布列并求出數(shù)學(xué)期望.
參考公式:,其中.
參考數(shù)據(jù):
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
【答案】(1)不能在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為獲得“運(yùn)動(dòng)達(dá)人”稱號(hào)與性別有關(guān);
(2)見(jiàn)解析.
【解析】
(1)計(jì)算比較3.841即可得到答案;
(2)計(jì)算出男教師和女教師人數(shù),的所有可能取值有,分別計(jì)算概率可得分布列,于是可求出數(shù)學(xué)期望.
(1)根據(jù)列聯(lián)表數(shù)據(jù)得:
不能在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為獲得“運(yùn)動(dòng)達(dá)人”稱號(hào)與性別有關(guān)
(2)根據(jù)分層抽樣方法得:男教師有人,女教師有人
由題意可知,的所有可能取值有
則;;;
的分布列為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知直線:,拋物線: ().
(1)若直線過(guò)拋物線的焦點(diǎn),求拋物線的方程;
(2)已知拋物線上存在關(guān)于直線對(duì)稱的相異兩點(diǎn)和.
①求證:線段PQ的中點(diǎn)坐標(biāo)為;
②求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線
(1)求曲線在點(diǎn)處的切線方程;(2)過(guò)點(diǎn)作直線與曲線交于兩點(diǎn),求線段的中點(diǎn)的軌跡方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓:,為左、右焦點(diǎn),為短軸端點(diǎn),且,離心率為,為坐標(biāo)原點(diǎn).
(1)求橢圓的方程,
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓C恒有兩個(gè)交點(diǎn),,且滿足?若存在,求出該圓的方程,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線 .
(1)判斷直線與曲線的位置關(guān)系;
(2)若是曲線上的動(dòng)點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采取分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對(duì)學(xué)生進(jìn)行視力調(diào)查。
(I)求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目。
(II)若從抽取的6所學(xué)校中隨機(jī)抽取2所學(xué)校做進(jìn)一步數(shù)據(jù)分析,
(1)列出所有可能的抽取結(jié)果;
(2)求抽取的2所學(xué)校均為小學(xué)的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐的底面為直角梯形,,,底面,且,是的中點(diǎn).
(1)求證:直線平面;
(2)若,求二面角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com