【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.若曲線的極坐標(biāo)方程為,點(diǎn)的極坐標(biāo)為,在平面直角坐標(biāo)系中,直線經(jīng)過(guò)點(diǎn),且傾斜角為.

(1)寫出曲線的直角坐標(biāo)方程以及點(diǎn)的直角坐標(biāo);

(2)設(shè)直線與曲線相交于,兩點(diǎn),求的值.

【答案】1)曲線的直角坐標(biāo)方程為;點(diǎn)的直角坐標(biāo)為2

【解析】

(1)由極坐標(biāo)與直角坐標(biāo)的互化可得的直角坐標(biāo)方程為點(diǎn)的直角坐標(biāo)為;

(2)將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,利用直線的參數(shù)方程中的幾何意義,再求解即可.

解:(1)曲線的極坐標(biāo)方程化為直角坐標(biāo)方程為,

點(diǎn)的極坐標(biāo)為:,化為直角坐標(biāo)為.

(2)直線的參數(shù)方程為,即為參數(shù)),

的參數(shù)方程代入曲線的直角坐標(biāo)方程,得

整理得:,

顯然有,則,,

,

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求的單調(diào)遞增區(qū)間.

(2)在ΔABC中,角A,B,C所對(duì)的邊分別為a,b,c,若f(A)=1,c=10,cosB=,求ΔABC的中線AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某市有一條東西走向的公路l,現(xiàn)欲經(jīng)過(guò)公路l上的O處鋪設(shè)一條南北走向的公路m,在施工過(guò)程中發(fā)現(xiàn)O處的正北方向1百米的A處有一漢代古跡,為了保護(hù)古跡,該市委決定以A為圓心,1百米為半徑設(shè)立一個(gè)圓形保護(hù)區(qū),為了連通公路l,m,欲再新建一條公路PQ,點(diǎn)P,Q分別在公路l,m上(點(diǎn)P,Q分別在點(diǎn)O的正東、正北方向),且要求PQ與圓A相切.

(1)當(dāng)點(diǎn)P距O處2百米時(shí),求OQ的長(zhǎng);

(2)當(dāng)公路PQ的長(zhǎng)最短時(shí),求OQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓)的左、右焦點(diǎn)分別為,,離心率,橢圓的短軸長(zhǎng)為2.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)已知直線,過(guò)右焦點(diǎn),且它們的斜率乘積為,設(shè),分別與橢圓交于點(diǎn)A,BCD.

①求的值;

②設(shè)的中點(diǎn)M的中點(diǎn)為N,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.為曲線上的動(dòng)點(diǎn),點(diǎn)在射線上,且滿足.

(Ⅰ)求點(diǎn)的軌跡的直角坐標(biāo)方程;

(Ⅱ)設(shè)軸交于點(diǎn),過(guò)點(diǎn)且傾斜角為的直線相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,角、所對(duì)的邊分別為、,,當(dāng)角取最大值時(shí),的周長(zhǎng)為,則__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),。

(1)求的單調(diào)區(qū)間;

(2)討論零點(diǎn)的個(gè)數(shù);

(3)當(dāng)時(shí),設(shè)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).

(1)求的取值范圍;

(2)記兩個(gè)極值點(diǎn)為,且,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)將甲、乙兩個(gè)學(xué)生在高二的6次數(shù)學(xué)測(cè)試的成績(jī)(百分制)制成如圖所示的莖葉圖,進(jìn)入高三后,由于改進(jìn)了學(xué)習(xí)方法,甲、乙這兩個(gè)學(xué)生的考試成績(jī)預(yù)計(jì)同時(shí)有了大的提升:若甲(乙)的高二任意一次考試成績(jī)?yōu)?/span>,則甲(乙)的高三對(duì)應(yīng)的考試成績(jī)預(yù)計(jì)為.

(1)試預(yù)測(cè):高三6次測(cè)試后,甲、乙兩個(gè)學(xué)生的平均成績(jī)分別為多少?誰(shuí)的成績(jī)更穩(wěn)定?

(2)若已知甲、乙兩個(gè)學(xué)生的高二6次考試成績(jī)分別由低到高進(jìn)步的,定義為高三的任意一次考試后甲、乙兩個(gè)學(xué)生的當(dāng)次成績(jī)之差的絕對(duì)值,求的平均值.

查看答案和解析>>

同步練習(xí)冊(cè)答案