【題目】現(xiàn)將甲、乙兩個學生在高二的6次數(shù)學測試的成績(百分制)制成如圖所示的莖葉圖,進入高三后,由于改進了學習方法,甲、乙這兩個學生的考試成績預計同時有了大的提升:若甲(乙)的高二任意一次考試成績?yōu)?/span>,則甲(乙)的高三對應的考試成績預計為.

(1)試預測:高三6次測試后,甲、乙兩個學生的平均成績分別為多少?誰的成績更穩(wěn)定?

(2)若已知甲、乙兩個學生的高二6次考試成績分別由低到高進步的,定義為高三的任意一次考試后甲、乙兩個學生的當次成績之差的絕對值,求的平均值.

【答案】(1)見解析;(2)2

【解析】

(1)由莖葉圖計算高二6次考試的甲乙平均成績,再分別加4即為高三平均成績;(2)列舉甲、乙兩個學生的當次成績之差的絕對值,再計算均值即可

(1)甲高二的6次考試平均成績?yōu)?/span>

乙高二的6次考試平均成績?yōu)?/span>,

所以預測甲高三的6次考試平均成績?yōu)?6,乙高三6次考試平均成績?yōu)?6,

甲高三的6次考試平均成績的方差為.

乙高三的6次考試平均成績的方差為.

因為77>55.7,所以乙的成績比較穩(wěn)定.

(2)預測高三的6次考試成績?nèi)缦拢?/span>

第1次考試

第2次考試

第3次考試

第4次考試

第5次考試

第次6考試

72

80

83

90

92

99

75

79

86

88

90

98

因為y為高三的任意一次考試后甲、乙兩個學生的當次成績之差的絕對值,

所以的值依次為3,1,3,2,2,1,

所以的平均值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以原點為極點,軸正半軸為極軸建立極坐標系.若曲線的極坐標方程為,點的極坐標為,在平面直角坐標系中,直線經(jīng)過點,且傾斜角為.

(1)寫出曲線的直角坐標方程以及點的直角坐標;

(2)設直線與曲線相交于,兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若,證明:

2)若只有一個極值點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面,,,,,為棱的中點.

(1)求證:平面;

(2)求點到平面的距離,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.已知直線l上兩點MN的極坐標分別為(2,0),(),圓C的參數(shù)方程θ為參數(shù)).

(Ⅰ)設P為線段MN的中點,求直線OP的平面直角坐標方程;

(Ⅱ)判斷直線l與圓C的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),直線

)求函數(shù)的極值;

)求證:對于任意,直線都不是曲線的切線;

)試確定曲線與直線的交點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C的極坐標方程為,直線l的參數(shù)方程為為參數(shù),0≤απ).

1)求曲線C的直角坐標方程.并說明曲線C的形狀;

2)若直線l經(jīng)過點M1,0)且與曲線C交于AB兩點,求|AB|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱中,已知,,.是線段的中點.

1)求直線與平面所成角的正弦值;

2)求二面角的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小明跟父母、爺爺奶奶一同參加《中國詩詞大會》的現(xiàn)場錄制,5人坐成一排.若小明的父母至少有一人與他相鄰,則不同坐法的總數(shù)為

A. 60 B. 72 C. 84 D. 96

查看答案和解析>>

同步練習冊答案