精英家教網 > 高中數學 > 題目詳情

本小題滿分14分

如圖,正四棱柱中,,點上且.

(1) 證明:平面;

(2) 求二面角的余弦值.

 

【答案】

 

解法一:

依題設知

(Ⅰ)連結于點,則.由三垂線定理知,.…………2分

在平面內,連結于點

由于,故,互余.

于是.…………5分

與平面內兩條相交直線都垂直,所以平面.…………6分

(Ⅱ)作,垂足為,連結.由三垂線定理知

是二面角的平面角.…………8分

,

,

,

. …………12分

 ∴ …………13分

所以二面角的余弦值為.  …………14分.

解法二:

為坐標原點,射線軸的正半軸,建立如圖所示直角坐標系

依題設,.………2分

,.   ………4分

(Ⅰ)因為,,故,

,所以平面.   ………7分

(Ⅱ)設向量是平面的法向量,則

,.故.………10分

,則,,.………11分

等于二面角的平面角,

.………13分

所以二面角的余弦值為.  …………14分

 

【解析】

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數f(x)
的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分14分)設橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數學 來源:2011年江西省撫州市教研室高二上學期期末數學理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數的圖像上,其中=.
(1)證明:數列}是等比數列;
(2)設,求及數列{}的通項公式;
(3)記,求數列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數學 來源:2015屆山東省威海市高一上學期期末考試數學試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現,第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關于第天的函數關系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年廣東省高三下學期第一次月考文科數學試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求,滿足的關系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習冊答案