15.已知△ABC中,AC=1,$∠ABC=\frac{2π}{3}$,設(shè)∠BAC=x,記$f(x)=\overrightarrow{AB}•\overrightarrow{BC}$;
(1)求函數(shù)f(x)的解析式及定義域;
(2)試寫出函數(shù)f(x)的單調(diào)遞增區(qū)間,并求方程$f(x)=\frac{1}{6}$的解.

分析 (1)由條件利用正弦定理、兩個(gè)向量的數(shù)量積公式、三角恒等變換化簡(jiǎn)函數(shù)f(x)的解析式.
(2)利用正弦函數(shù)的單調(diào)性求得f(x)的單調(diào)區(qū)間,并求出x的值.

解答 解:(1)由正弦定理有$\frac{BC}{sinx}$=$\frac{1}{sin\frac{2π}{3}}$=$\frac{AD}{sin(\frac{π}{3}-x)}$
∴BC=$\frac{1}{sin\frac{2π}{3}}$•sinx,AB=$\frac{sin(\frac{π}{3}-x)}{sin\frac{2π}{3}}$,
∴$f(x)=\overrightarrow{AB}•\overrightarrow{BC}$=$\frac{4}{3}$sinx•sin($\frac{π}{3}$-x)•$\frac{1}{2}$=$\frac{2}{3}$($\frac{\sqrt{3}}{2}$cosx-$\frac{1}{2}$sinx)sinx=$\frac{1}{3}$sin(2x+$\frac{π}{6}$)-$\frac{1}{6}$,
其定義域?yàn)椋?,$\frac{π}{3}$)
(2)∵-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{6}$≤$\frac{π}{2}$+2kπ,k∈Z,
∴-$\frac{π}{3}$+kπ≤x≤$\frac{π}{6}$+kπ,k∈Z,
∵x∈(0,$\frac{π}{3}$)
∴遞增區(qū)間$(0,\frac{π}{6}]$,
∵方程$f(x)=\frac{1}{6}$=$\frac{1}{3}$sin(2x+$\frac{π}{6}$)-$\frac{1}{6}$,
∴sin(2x+$\frac{π}{6}$)=1,
解得$x=\frac{π}{6}$.

點(diǎn)評(píng) 本題考查了正弦定理、數(shù)量積運(yùn)算、三角形的內(nèi)角和定理、正弦函數(shù)的單調(diào)性,考查了推理能力和計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若函數(shù)$f(x)=\frac{x}{2}+ln\sqrt{x}$在某區(qū)間[a,b]上的值域?yàn)閇ta,tb],則t的取值范圍($\frac{1}{2}$,$\frac{1+e}{2e}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)y=f(x)是R上的奇函數(shù),且在區(qū)間(0,+∞)單調(diào)遞增,若f(-2)=0,則不等式xf(x)<0的解集是(-2,0)∪(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=b+logax(x>0且a≠1)的圖象經(jīng)過(guò)點(diǎn)(8,2)和(1,-1).
(1)求f(x)的解析式;
(2)[f(x)]2=3f(x),求實(shí)數(shù)x的值;
(3)令y=g(x)=2f(x+1)-f(x),求y=g(x)的最小值及其最小值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)數(shù)列{an}是集合{x|x=3s+3t,s<t且s,t∈N}中所有的數(shù)從小到大排列成的數(shù)列,即a1=4,a2=10,a3=12,a4=28,a5=30,a6=36,…,將數(shù)列{an}中各項(xiàng)按照上小下大,左小右大的原則排成如圖的等腰直角三角形數(shù)表,則a15的值為324.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若關(guān)于x的不等式$\frac{x-a}{x-b}>0$(a,b∈R)的解集為(-∞,1)∪(4,+∞),則a+b=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.如圖,已知半徑為1的扇形AOB,∠AOB=60°,P為弧$\widehat{AB}$上的一個(gè)動(dòng)點(diǎn),則$\overrightarrow{OP}•\overrightarrow{AB}$取值范圍是[$-\frac{1}{2}$,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知在二項(xiàng)式${(\root{3}{x}-\frac{1}{{2\root{3}{x}}})^n}$的展開(kāi)式中,第6項(xiàng)為常數(shù)項(xiàng).
(1)求n的值,并求含x2項(xiàng)的系數(shù);
(2)求展開(kāi)式中所有的有理項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.記函數(shù)f(x)($\frac{1}{e}$<x≤e,e=2.71828…是自然對(duì)數(shù)的底數(shù))的導(dǎo)數(shù)為f′(x),函數(shù)g(x)=(x-$\frac{1}{\sqrt{e}}$)f′(x)只有一個(gè)零點(diǎn),且g(x)的圖象不經(jīng)過(guò)第一象限,當(dāng)x>$\frac{1}{e}$時(shí),f(x)+4lnx+$\frac{1}{lnx+1}$>$\frac{1}{\sqrt{e}}$,f[f(x)+4lnx+$\frac{1}{lnx+1}$]=0,下列關(guān)于f(x)的結(jié)論,成立的是( 。
A.當(dāng)x=e時(shí),f(x)取得最小值B.f(x)最大值為1
C.不等式f(x)<0的解集是(1,e)D.當(dāng)$\frac{1}{e}$<x<1時(shí),f(x)>0

查看答案和解析>>

同步練習(xí)冊(cè)答案