5.若函數(shù)$f(x)=\frac{x}{2}+ln\sqrt{x}$在某區(qū)間[a,b]上的值域為[ta,tb],則t的取值范圍($\frac{1}{2}$,$\frac{1+e}{2e}$).

分析 由題意可得$\left\{\begin{array}{l}{\frac{a}{2}+\frac{1}{2}lna=ta}\\{\frac{2}+\frac{1}{2}lnb=tb}\end{array}\right.$,即$\frac{x}{2}+\frac{1}{2}lnx=tx$在(0,+∞)上有2個不等實數(shù)根,故函數(shù)y=$\frac{x}{2}+\frac{1}{2}lnx$的圖象與函數(shù)y=tx的圖象在(0,+∞)上有兩個不同的交點(diǎn).求得t的范圍.

解答 解:函數(shù)$f(x)=\frac{x}{2}+ln\sqrt{x}$在(0,+∞)為增函數(shù),某區(qū)間[a,b]上的值域為[ta,tb],
可得$\left\{\begin{array}{l}{\frac{a}{2}+\frac{1}{2}lna=ta}\\{\frac{2}+\frac{1}{2}lnb=tb}\end{array}\right.$,即$\frac{x}{2}+\frac{1}{2}lnx=tx$,變形為$\frac{1}{2}lnx=x(t-\frac{1}{2})$在(0,+∞)上有2個不等實數(shù)根,
故函數(shù)y=$\frac{1}{2}lnx$的圖象與函數(shù)y=(t-$\frac{1}{2}$)x的圖象在(0,+∞)上有兩個不同的交點(diǎn),
∴t-$\frac{1}{2}$>0,解得:t$>\frac{1}{2}$
令F(x)=$\frac{x}{2}+\frac{1}{2}lnx$-tx
則F′(x)=$\frac{1}{2x}+\frac{1}{2}-t$
令F′(x)=0,解得:x=$\frac{1}{2t-1}$
故當(dāng)x=$\frac{1}{2t-1}$是函數(shù)y=$\frac{1}{2}lnx$的圖象與函數(shù)y=(t-$\frac{1}{2}$)x的圖象切點(diǎn).
故得$(t-\frac{1}{2})\frac{1}{2t-1}=\frac{1}{2}ln(\frac{1}{2t-1})$,
解得:t=$\frac{1+e}{2e}$
故得t的取值范圍是$\frac{1}{2}<t<\frac{1+e}{2e}$.
故答案為:($\frac{1}{2}$,$\frac{1+e}{2e}$)

點(diǎn)評 本題主要考查求函數(shù)的定義域和值域,構(gòu)造函數(shù)的思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.直線3x+4y-12=0與兩坐標(biāo)軸的交點(diǎn)為A,B,其中點(diǎn)A在x軸上,點(diǎn)B在y軸上.
(1)求交點(diǎn)A和B的坐標(biāo);
(2)求以原點(diǎn)為圓心且與直線AB相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知i是虛數(shù)單位,復(fù)數(shù)(2+i)2的共軛復(fù)數(shù)為(  )
A.3-4iB.3+4iC.5-4iD.5+4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)a,b∈R,函數(shù)$f(x)=\frac{1}{3}{x^3}+a{x^2}+bx+1$,g(x)=ex(e為自然對數(shù)的底數(shù)),且函數(shù)f(x)的圖象與函數(shù)g(x)的圖象在x=0處有公共的切線.
(Ⅰ)求b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若g(x)>f(x)在區(qū)間(-∞,0)內(nèi)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.曲線$y=lnx-\frac{2}{x}$在x=1處的切線的傾斜角為α,則cosα+sinα的值為( 。
A.$\frac{{2\sqrt{10}}}{5}$B.$\frac{{\sqrt{10}}}{10}$C.$\frac{{\sqrt{10}}}{5}$D.$\frac{{3\sqrt{10}}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)$f(x)=xlnx-\frac{a}{2}{x^2}+1$.
(1)若y=f(x)在(0,+∞)恒單調(diào)遞減,求a的取值范圍;
(2)若函數(shù)y=f(x)有兩個極值點(diǎn)x1,x2(x1<x2),求a的取值范圍并證明x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如果實數(shù)x,y滿足關(guān)系$\left\{\begin{array}{l}x-y+1≥0\\ x+y-2≤0\\ x≥0\\ y≥0\end{array}\right.$,又$\frac{2x+y-7}{x-3}≤c$恒成立,則c的取值范圍為( 。
A.[$\frac{9}{5}$,3]B.(-∞,3]C.[3,+∞)D.(2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知命題p:“函數(shù)$f(x)={2^{{x^2}-2x}}+{m^2}-\frac{5m}{2}+\frac{1}{2}$在R上有零點(diǎn)”,命題q:函數(shù)f(x)=$\frac{2}{x-m}$在區(qū)間(1,+∞)內(nèi)是減函數(shù),若p∧q為真命題,則實數(shù)m的取值范圍為[$\frac{1}{2}$,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知△ABC中,AC=1,$∠ABC=\frac{2π}{3}$,設(shè)∠BAC=x,記$f(x)=\overrightarrow{AB}•\overrightarrow{BC}$;
(1)求函數(shù)f(x)的解析式及定義域;
(2)試寫出函數(shù)f(x)的單調(diào)遞增區(qū)間,并求方程$f(x)=\frac{1}{6}$的解.

查看答案和解析>>

同步練習(xí)冊答案