【題目】是定義在上且滿足如下條件的函數(shù)組成的集合:①對(duì)任意的,都有②存在常數(shù)使得對(duì)任意的,都有.
(1)設(shè)問(wèn)是否屬于?說(shuō)明理由;
(2)若如果存在使得證明:這樣的是唯一的;
(3)設(shè)且試求的取值范圍.
【答案】(1)函數(shù)屬于,理由見(jiàn)解析;(2)證明見(jiàn)解析;(3)
【解析】
(1)計(jì)算出的值域,并判斷出對(duì)任意的,都有,從而證明;(2)假設(shè)存在不同的兩個(gè)數(shù),,得到,與矛盾,從而證明.(3)由得到,由,整理后得到,從而得到,求出的范圍.
(1)易知的值域?yàn)?/span>
對(duì)任意的,都有
故函數(shù)屬于
(2)假設(shè)存在不同的兩個(gè)數(shù),使得,
因?yàn)?/span>,所以
因?yàn)?/span>,所以,所以
與矛盾.
所以滿足的是唯一的.
(3)因?yàn)?/span>,故,解得.
且對(duì)任意,
都有
.
所以,對(duì)任意恒成立,
所以,解得
綜上,實(shí)數(shù)的取值范圍為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)),設(shè)與的交點(diǎn)為,當(dāng)變化時(shí), 的軌跡為曲線.
(1)寫出的普遍方程及參數(shù)方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,設(shè)曲線的極坐標(biāo)方程為, 為曲線上的動(dòng)點(diǎn),求點(diǎn)到的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中, , ,點(diǎn)是上的動(dòng)點(diǎn).現(xiàn)將矩形沿著對(duì)角線折成二面角,使得.
(Ⅰ)求證:當(dāng)時(shí), ;
(Ⅱ)試求的長(zhǎng),使得二面角的大小為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,在區(qū)間上存在三個(gè)不同的實(shí)數(shù),使得以為邊長(zhǎng)的三角形是直角三角形,則的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)K(-1,0)為直線l與拋物線C準(zhǔn)線的交點(diǎn),直線l與拋物線C相交于A,B兩點(diǎn).
(1)求拋物線C的方程;
(2)設(shè)·=,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】知函數(shù) (、為常數(shù)),曲線在點(diǎn)處的切線方程是.
(1)求、的值
(2)求的最大值
(3)設(shè),證明:對(duì)任意,都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),若函數(shù)在內(nèi)有兩個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍是( )
A. B. (0,1)
C. (0,2) D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com