12.已知圓的方程為x2+y2+ax+2y+a2=0,要使過(guò)定點(diǎn)A(1,2)作圓的切線有兩條,則a的取值范圍是(-$\frac{2\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$).

分析 圓的方程化為標(biāo)準(zhǔn)方程,求出圓心和半徑,過(guò)定點(diǎn)A(1,2)作圓的切線有兩條,點(diǎn)A必在圓外,推出不等式,然后解答不等式即可.

解答 解:將圓的方程配方得(x+$\frac{a}{2}$)2+(y+1)2=$\frac{4-3{a}^{2}}{4}$,圓心C的坐標(biāo)為(-$\frac{a}{2}$,-1),半徑r=$\sqrt{\frac{4-3{a}^{2}}{4}}$,
條件是4-3a2>0,過(guò)點(diǎn)A(1,2)所作圓的切線有兩條,則點(diǎn)A必在圓外,即$\sqrt{(1+\frac{a}{2})^{2}+(2+1)^{2}}$>$\sqrt{\frac{4-3{a}^{2}}{4}}$.
化簡(jiǎn)得a2+a+9>0.
由4-3a2>0,a2+a+9>0,
解之得-$\frac{2\sqrt{3}}{3}$<a<$\frac{2\sqrt{3}}{3}$,a∈R.
故a的取值范圍是(-$\frac{2\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$).

點(diǎn)評(píng) 本題考查圓的切線方程,直線和圓的方程的應(yīng)用,考查一元二次不等式的解法,邏輯思維能力,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足$\frac{2a-b}{cosB}=\frac{c}{cosC}$.
(1)求角C的值;
(2)若c=7,△ABC的面積為$10\sqrt{3}$,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知F為雙曲線C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的左焦點(diǎn),A(1,4),P是C右支上一點(diǎn),當(dāng)△APF周長(zhǎng)最小時(shí),點(diǎn)F到直線AP的距離為$\frac{32}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖所示,在Rt△ABC中,已知A(-2,0),直角頂點(diǎn)$B(0,-2\sqrt{2})$,點(diǎn)C在x軸上.
(1)求Rt△ABC外接圓的方程;
(2)求過(guò)點(diǎn)(0,3)且與Rt△ABC外接圓相切的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖,在四邊形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2$\sqrt{2}$,AD=2,則四邊形ABCD繞AD旋轉(zhuǎn)一周所成幾何體的表面積為( 。
A.(60+4$\sqrt{2}$)πB.(60+8$\sqrt{2}$)πC.(56+8$\sqrt{2}$)πD.(56+4$\sqrt{2}$)π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)函數(shù)f(x)=xlnx,(x>0).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)F(x)=ax2+f'(x),(a∈R),F(xiàn)(x)是否存在極值,若存在,請(qǐng)求出極值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.${({x^2}-\frac{1}{2x})^6}$展開(kāi)式中的常數(shù)項(xiàng)是$\frac{15}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.以下說(shuō)法正確的是( 。
①若x,y∈R,則“x=y“是“$xy≥{(\frac{x+y}{2})^2}$“的充要條件.
②命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題
③“x2+2x≥ax在x∈[1,2]恒成立”?“對(duì)于x∈[1,2],有(x2+2x)min≥(ax)max
④命題“若a=-1,則函數(shù)f(x)=ax2+2x-1只有一個(gè)零點(diǎn)”的逆命題為真命題.
A.①②B.①②④C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知直角坐標(biāo)平面O-XY上的動(dòng)點(diǎn)P到定點(diǎn)F(1,0)的距離比它到y(tǒng)軸的距離多1,記P點(diǎn)的軌跡為曲線C,則直線l:2x-3y+4=0與曲線C的交點(diǎn)的個(gè)數(shù)為( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案