2.已知兩非零向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$不共線.設(shè)$\overrightarrow{a}$=λ$\overrightarrow{{e}_{1}}$+μ$\overrightarrow{{e}_{2}}$(λ、μ∈R且λ22≠0),則(  )
A.$\overrightarrow{a}$∥$\overrightarrow{{e}_{1}}$B.$\overrightarrow{a}$∥$\overrightarrow{{e}_{2}}$
C.$\overrightarrow{a}$與$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$共面D.以上三種情況均有可能

分析 利用向量共面定理即可得出.

解答 解:∵兩非零向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$不共線.$\overrightarrow{a}$=λ$\overrightarrow{{e}_{1}}$+μ$\overrightarrow{{e}_{2}}$(λ、μ∈R且λ22≠0),
∴$\overrightarrow{a}$與$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$共面.
故選:C.

點(diǎn)評(píng) 本題考查了向量共面定理,考查了推理能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)已知x<$\frac{5}{4}$,求f(x)=4x-2+$\frac{1}{4x-5}$的最大值;
(2)已知x為正實(shí)數(shù)且x2+$\frac{{y}^{2}}{2}$=1,求x$\sqrt{1+{y}^{2}}$的最大值;
(3)求函數(shù)y=$\frac{\sqrt{x-1}}{x+3+\sqrt{x-1}}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知A={(x,y)|y=3x-2},B={(x,y)|y=-x+10},求A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若ln2=m,ln3=n,則ln216=3m+3n(用m,n表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.圓O的直徑為BC,點(diǎn)A是圓周上異于B,C的一點(diǎn),且|AB|•|AC|=1,若點(diǎn)P是圓O所在平面內(nèi)的一點(diǎn),且$\overrightarrow{AP}=\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{9\overrightarrow{AC}}{|\overrightarrow{AC}|}$,則$\overrightarrow{PB}•\overrightarrow{PC}$的最大值為(  )
A.2$\sqrt{3}$B.9C.76D.81

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,an+1=1+Sn(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{$\frac{n}{{a}_{n}}$}的前n項(xiàng)和Rn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F,橢圓C與x軸正半軸交于A點(diǎn),與y軸正半軸交于B(0,2),且$\overrightarrow{BF}$•$\overrightarrow{BA}$=4$\sqrt{2}$+4,過點(diǎn)D(4,0)作直線l交橢圓于不同兩點(diǎn)P,Q,則直線l的斜率的取值范圍是( 。
A.-1<k<$\frac{\sqrt{2}}{2}$B.-$\frac{\sqrt{2}}{2}$<k<$\frac{\sqrt{2}}{2}$C.-$\frac{\sqrt{2}}{2}$<k<1D.-1<k<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距為2$\sqrt{6}$,橢圓C上任意一點(diǎn)到橢圓兩個(gè)焦點(diǎn)的距離之和為6.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l:y=kx-2與橢圓C交于A,B兩點(diǎn),點(diǎn)P(0,1),且|PA|=|PB|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)橢圓$\frac{x^2}{3}+\frac{y^2}{2}$=1右焦點(diǎn)為F2,點(diǎn)P是圓x2+y2-6x+8=0上的動(dòng)點(diǎn),則PF2的最大值為3.

查看答案和解析>>

同步練習(xí)冊(cè)答案