A. | -1<k<$\frac{\sqrt{2}}{2}$ | B. | -$\frac{\sqrt{2}}{2}$<k<$\frac{\sqrt{2}}{2}$ | C. | -$\frac{\sqrt{2}}{2}$<k<1 | D. | -1<k<1 |
分析 F(c,0),A(a,0),B(0,2),由于$\overrightarrow{BF}$•$\overrightarrow{BA}$=4$\sqrt{2}$+4,可得ca+4=$4\sqrt{2}$+4,又b=2,a2=b2+c2,可得橢圓C的方程.設(shè)直線l的方程為:y=k(x-4),與橢圓方程聯(lián)立化為關(guān)于x的一元二次方程,利用△>0 即可得出.
解答 解:F(c,0),A(a,0),B(0,2),
∵$\overrightarrow{BF}$•$\overrightarrow{BA}$=4$\sqrt{2}$+4,
∴ca+4=$4\sqrt{2}$+4,又b=2,a2=b2+c2,
解得a2=8,c2=4,
∴橢圓C的方程為:$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$.
設(shè)直線l的方程為:y=k(x-4),
聯(lián)立$\left\{\begin{array}{l}{y=k(x-4)}\\{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1}\end{array}\right.$,化為:(1+2k2)x2+16k2x+32k2-8=0,
∵直線l交橢圓于不同兩點(diǎn)P,Q,
∴△=256k4-4(1+2k2)(32k2-8)>0,
化為:k2$<\frac{1}{2}$,
解得$-\frac{\sqrt{2}}{2}<k<\frac{\sqrt{2}}{2}$,
∴直線l的斜率的取值范圍是$(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})$.
故選:B.
點(diǎn)評 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問題、一元二次方程的實(shí)數(shù)根與判別式的關(guān)系,考查了推理能力與計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{a}$∥$\overrightarrow{{e}_{1}}$ | B. | $\overrightarrow{a}$∥$\overrightarrow{{e}_{2}}$ | ||
C. | $\overrightarrow{a}$與$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$共面 | D. | 以上三種情況均有可能 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{2}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (0,2) | C. | (1,2) | D. | (2,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com