6.已知函數(shù)f(cosx)=cos2x,則f(sin30°)=-$\frac{1}{2}$.

分析 由題意可得f(sin30°)=f(cos60°)=cos120°,計算可得結(jié)果.

解答 解:∵函數(shù)f(cosx)=cos2x,則f(sin30°)=f(cos60°)=cos120°=-$\frac{1}{2}$,
故答案為:-$\frac{1}{2}$.

點評 本題主要考查利用誘導(dǎo)公式進行化簡求值,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某城市在進行規(guī)劃時,準(zhǔn)備設(shè)計一個圓形的開放式公園,為達到社會和經(jīng)濟效益雙豐收,園林公司進行如下設(shè)計,安排圓內(nèi)接四邊形ABCD作為綠化區(qū)域,其余作為市民活動區(qū)域,其中△ABD區(qū)域種植花木后出售,△BCD區(qū)域種植草皮后出售,已知草皮每平方米售價為a元,花木每平方米的售價是草皮每平方米售價的三倍,若BC=6km,AD=CD=4km.
(1)若BD=2$\sqrt{7}$km,求綠化區(qū)域的面積;
(2)設(shè)∠BCD=θ,當(dāng)θ取何值時,園林公司的總銷售金額最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知tan(α+β)=5,tan(α-β)=3,求tan2α,tan2β,tan(2α+$\frac{π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知命題p:方程x2+mx+1=0有兩個不相等的負(fù)實根,命題q:不等式x2+(m-2)x+1=0無實根,若p或q為真,p且q為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在平行四邊形ABCD中,已知AB=CD=a,AD=2a,∠DAB=60°,AC∩BD=E,將其沿對角線BD折成直二面角.
(1)證明:AB⊥平面BCD;
(2)證明:平面ACD⊥平面ABD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求證:$\frac{si{n}^{2}α}{1+cotα}$+$\frac{co{s}^{2}α}{1+tanα}$=1-sinαcosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(1)設(shè)f(x)的定義域為R的函數(shù),求證:F(x)=$\frac{1}{2}$[f(x)+f(-x)]是偶函數(shù);G(x)=$\frac{1}{2}$[f(x)-f(-x)]是奇函數(shù).
(2)利用上述結(jié)論,你能把函數(shù)f(x)=3x3+2x2-x+3表示成一個偶函數(shù)與一個奇函數(shù)之和的形式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知不等式loga(1-$\frac{1}{x+2}$)>0的解集是(-∞,-2),則a的取值范圍是( 。
A.0<a$<\frac{1}{2}$B.$\frac{1}{2}$<a<1C.a>2D.a>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)解析式為f(x)=4•9x+3x+2.
(1)若已知函數(shù)f(x)的定義域為(-1,1),求函數(shù)f(x)的值域;
(2)若已知函數(shù)f(x)的值域為[7,+∞),求f(x)的定義域.

查看答案和解析>>

同步練習(xí)冊答案