【題目】已知函數(shù) F (x) = e x 滿足 F ( x) = g ( x) + h( x) ,且 g ( x), h( x) 分別是定義在 R 上的偶函數(shù)和奇函數(shù).
(1)求函數(shù) h(x)的反函數(shù);
(2)已知(x) = g(x 1),若函數(shù)(x)在 [1,3]上滿足(2 a+1) ,求實(shí)數(shù) a 的取值范圍;
(3)若對(duì)于任意 x ∈(0,2]不等式 g(2x) ah(x) ≥ 0 恒成立,求實(shí)數(shù) a 的取值范圍.
【答案】(1) (2) (3)
【解析】
(1)由題意可得:,,聯(lián)立解得:,.由,化為:,,解得.可得.
(2),函數(shù)在,上滿足,轉(zhuǎn)化為:函數(shù)在,上滿足:,由于函數(shù)在,上單調(diào)遞增,且函數(shù)為偶函數(shù),可得,,,解得范圍.
(3)不等式,即,令,由,,可得,,不等式轉(zhuǎn)化為:,,利用基本不等式的性質(zhì)即可得出.
解:(1)由題意可得:,,
聯(lián)立解得:,.
由,化為:,,解得.
.
(2),函數(shù)在,上滿足,
轉(zhuǎn)化為:函數(shù)在,上滿足:,
由于函數(shù)在,上單調(diào)遞增,且函數(shù)為偶函數(shù),
,,,解得.
(3)不等式,即,
令,由,,可得,,
不等式轉(zhuǎn)化為:,,,當(dāng)且僅當(dāng)時(shí)取等號(hào).
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】朱載堉(1536—1611),明太祖九世孫,音樂家、數(shù)學(xué)家、天文歷算家,在他多達(dá)百萬(wàn)字的著述中以《樂律全書》最為著名,在西方人眼中他是大百科全書式的學(xué)者王子。他對(duì)文藝的最大貢獻(xiàn)是他創(chuàng)建了“十二平均律”,此理論被廣泛應(yīng)用在世界各國(guó)的鍵盤樂器上,包括鋼琴,故朱載堉被譽(yù)為“鋼琴理論的鼻祖”。“十二平均律”是指一個(gè)八度有13個(gè)音,相鄰兩個(gè)音之間的頻率之比相等,且最后一個(gè)音頻率是最初那個(gè)音頻率的2倍,設(shè)第二個(gè)音的頻率為,第八個(gè)音的頻率為,則等于( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,分別為雙曲線的左、右焦點(diǎn),點(diǎn)P是以為直徑的圓與C在第一象限內(nèi)的交點(diǎn),若線段的中點(diǎn)Q在C的漸近線上,則C的兩條漸近線方程為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“移動(dòng)支付、高鐵、網(wǎng)購(gòu)、共享單車”被稱為中國(guó)的“新四大發(fā)明”.為了幫助50歲以上的中老年人更快地適應(yīng)“移動(dòng)支付”,某機(jī)構(gòu)通過網(wǎng)絡(luò)組織50歲以上的中老年人學(xué)習(xí)移動(dòng)支付相關(guān)知識(shí).學(xué)習(xí)結(jié)束后,每人都進(jìn)行限時(shí)答卷,得分都在內(nèi).在這些答卷(有大量答卷)中,隨機(jī)抽出份,統(tǒng)計(jì)得分繪出頻率分布直方圖如圖.
(1)求出圖中的值,并求樣本中,答卷成績(jī)?cè)?/span>上的人數(shù);
(2)以樣本的頻率為概率,從參加這次答卷的人群中,隨機(jī)抽取名,記成績(jī)?cè)?/span>分以上(含分)的人數(shù)為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在地上有同樣大小的 5 塊積木,一堆 2 個(gè),一堆 3 個(gè),要把積木一塊一塊的全部放到某個(gè)盒子里,每次 只能取出其中一堆最上面的一塊,則不同的取法有______種(用數(shù)字作答).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),函數(shù),,其中為常數(shù),且,令函數(shù)為函數(shù)和的積函數(shù).
(1)求函數(shù)的表達(dá)式,并求其定義域;
(2)當(dāng)時(shí),求函數(shù)的值域
(3)是否存在自然數(shù),使得函數(shù)的值域恰好為?若存在,試寫出所有滿足條件的自然數(shù)所構(gòu)成的集合;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD為平行四邊形,點(diǎn)O為對(duì)角線BD的中點(diǎn),點(diǎn)E,F(xiàn)分別為棱PC,PD的中點(diǎn),已知PA⊥AB,PA⊥AD.
(1)求證:直線PB∥平面OEF;
(2)求證:平面OEF⊥平面ABCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),其中,函數(shù)在點(diǎn)處的切線方程為,其中.
(1)求和并證明函數(shù)有且僅有一個(gè)零點(diǎn);
(2)當(dāng)時(shí),恒成立,求最小的整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
(本題滿分15分)已知m>1,直線,
橢圓,分別為橢圓的左、右焦點(diǎn).
(Ⅰ)當(dāng)直線過右焦點(diǎn)時(shí),求直線的方程;
(Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),,
的重心分別為.若原點(diǎn)在以線段
為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com