函數(shù)f(x)=ax-5+1(a>0,且a≠1)過定點(n,m),則二項式(y+m)n的展開式中y2的系數(shù)為
 
考點:二項式系數(shù)的性質(zhì),指數(shù)函數(shù)的單調(diào)性與特殊點
專題:二項式定理
分析:根據(jù)函數(shù)f(x)過定點(n,m),求出n、m的值,利用通項求二項式(y+1)5的展開式中y2的系數(shù).
解答: 解:∵函數(shù)f(x)=ax-5+1過定點(n,m),
∴當(dāng)x-5=0,即x=5時,y=1,
∴n=5,m=1;
∴在二項式(y+1)5的展開式中,
通項Tr+1=
C
r
5
•y5-r
令5-r=2,解得r=3,
∴展開式中y2的系數(shù)為
C
3
5
=10.
故答案為:10.
點評:本題考查了冪函數(shù)過定點的應(yīng)用問題,也考查了二項式系數(shù)的應(yīng)用問題,是基礎(chǔ)題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x+2x-3的零點所在的大致區(qū)間是( 。
A、(0,
1
2
B、(
1
2
,1)
C、(1,2)
D、(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在同一層有一排8間學(xué)術(shù)研討室,現(xiàn)要安排4個不同學(xué)科的研討會在這8間研討室,要求任兩個研討會不相鄰的安排方法數(shù)為( 。
A、5B、70C、120D、24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x3,x≤0
log
1
3
x,x>0
,則方程f(x)=-1解的個數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二項式(x2+
1
x3
)5
展開式中的常數(shù)項為
 
(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(x+a)•ex
x+1
(e為自然對數(shù)的底數(shù)),曲線y=f(x)在(1,f(1))處的切線與直線4x+3ey+1=0互相垂直.
(Ⅰ)求實數(shù)a的值;
(Ⅱ)若對任意x∈(
2
3
,+∞),(x+1)f(x)≥m(2x-1)恒成立,求實數(shù)m的取值范圍;
(Ⅲ)設(shè)g(x)=
(x+1)f(x)
x(
e
+ex)
,Tn=1+2[g(
1
n
)+g(
2
n
)+g(
3
n
)+…+g(
n-1
n
)](n=2,3…).問:是否存在正常數(shù)M,對任意給定的正整數(shù)n(n≥2),都有
1
T3
+
1
T6
+
1
T9
+…+
1
T3n
<M成立?若存在,求M的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,以O(shè)為極點,x軸的正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為θ=
π
4
,曲線C的參數(shù)方程為
x=
2
cosθ
y=sinθ

(1)寫出直線l與曲線C的直角坐標(biāo)方程;
(2)過點M平行于直線l1的直線與曲線C交于A、B兩點,若|MA|•|MB|=
8
3
,求點M軌跡的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由y=x2,y=x所圍成的圖形繞y軸旋轉(zhuǎn)所得到的旋轉(zhuǎn)體的體積V=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-ax(a∈R,e為自然對數(shù)的底數(shù))
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若a=1,函數(shù)g(x)=(x-m)f(x)-ex+x2+x在x∈(2,+∞)上為增函數(shù),求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案