已知數(shù)列{an}的通項公式為an=n2-n-30.
(1)求數(shù)列的前三項,60是此數(shù)列的第幾項?
(2)n為何值時,an=0,an>0,an<0?
(3)該數(shù)列前n項和Sn是否存在最值?說明理由.
(1)第10項 (2)0<n<6(n∈N*) (3)不存在,見解析
【解析】【解析】
(1)由an=n2-n-30,得
a1=1-1-30=-30,
a2=22-2-30=-28,
a3=32-3-30=-24.
設(shè)an=60,則60=n2-n-30.
解之得n=10或n=-9(舍去).
∴60是此數(shù)列的第10項.
(2)令an=n2-n-30=0,
解得n=6或n=-5(舍去),∴a6=0.
令n2-n-30>0,
解得n>6或n<-5(舍去).
∴當n>6(n∈N*)時,an>0.
令n2-n-30<0,解得0<n<6,
∴當0<n<6(n∈N*)時,an<0.
(3)Sn存在最小值,不存在最大值.
由an=n2-n-30=(n-)2-30,(n∈N*)
知{an}是遞增數(shù)列,且
a1<a2<…<a5<a6=0<a7<a8<a9<…,
故Sn存在最小值S5=S6,不存在Sn的最大值.
科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:6-1不等關(guān)系與不等式(解析版) 題型:解答題
已知關(guān)于x的不等式(ax-5)(x2-a)<0的解集為M.
(1)當a=4時,求集合M;
(2)當3∈M,且5∉M時,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:5-3等比數(shù)列及其前n項和(解析版) 題型:選擇題
已知各項為正的等比數(shù)列{an}中,a4與a14的等比中項為2,則2a7+a11的最小值為( )
A.16 B.8 C.6 D.4
查看答案和解析>>
科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:5-2等差數(shù)列及其前n項和(解析版) 題型:填空題
設(shè)等差數(shù)列{an}的前n項和為Sn,若S4=8,S8=20,則a11+a12+a13+a14=________.
查看答案和解析>>
科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:5-2等差數(shù)列及其前n項和(解析版) 題型:選擇題
若等差數(shù)列的第一、二、三項依次是、、,則數(shù)列的公差d是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:5-1數(shù)列的概念與簡單表示法(解析版) 題型:填空題
已知數(shù)列{an}滿足:a4n-3=1,a4n-1=0,a2n=an,n∈N*,則a2009=________;a2014=________.
查看答案和解析>>
科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:4-4數(shù)系的擴充與復數(shù)的引入(解析版) 題型:填空題
已知復數(shù)z1=cosθ-i,z2=sinθ+i,則z1·z2的實部的最大值為________,虛部的最大值為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:4-3平面向量的數(shù)量積及應(yīng)用(解析版) 題型:選擇題
平面上有四個互異的點A,B,C,D,滿足(-)·(-)=0,則△ABC是( )
A.直角三角形 B.等腰三角形
C.等腰直角三角形 D.等邊三角形
查看答案和解析>>
科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:4-1向量的概念及運算(解析版) 題型:選擇題
若四邊形ABCD滿足+=0,(-)·=0,則該四邊形一定是( )
A.直角梯形 B.菱形 C.矩形 D.正方形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com