設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S4=8,S8=20,則a11+a12+a13+a14=________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-2一元二次不等式及其解法(解析版) 題型:填空題
若不等式ax2+bx+2>0的解集為-<x<,則不等式2x2+bx+a<0的解集是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-4數(shù)列求和(解析版) 題型:解答題
已知數(shù)列{an}是公差不為0的等差數(shù)列,a1=2,且a2,a3,a4+1成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an+2an,求數(shù)列{bn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-3等比數(shù)列及其前n項(xiàng)和(解析版) 題型:選擇題
設(shè){an}是由正數(shù)組成的等比數(shù)列,Sn為其前n項(xiàng)和.已知a2·a4=1,S3=7,則S5=( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-2等差數(shù)列及其前n項(xiàng)和(解析版) 題型:選擇題
已知數(shù)列{an},{bn}都是公差為1的等差數(shù)列,其首項(xiàng)分別為a1,b1,且a1+b1=5,a1,b1∈N*.設(shè)cn=abn(n∈N*),則數(shù)列{cn}的前10項(xiàng)和等于( )
A.55 B.70 C.85 D.100
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-2等差數(shù)列及其前n項(xiàng)和(解析版) 題型:選擇題
已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若2a6=a8+6,則S7=( )
A.49 B.42 C.35 D.28
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-1數(shù)列的概念與簡(jiǎn)單表示法(解析版) 題型:解答題
已知數(shù)列{an}的通項(xiàng)公式為an=n2-n-30.
(1)求數(shù)列的前三項(xiàng),60是此數(shù)列的第幾項(xiàng)?
(2)n為何值時(shí),an=0,an>0,an<0?
(3)該數(shù)列前n項(xiàng)和Sn是否存在最值?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-4數(shù)系的擴(kuò)充與復(fù)數(shù)的引入(解析版) 題型:填空題
已知m∈R,復(fù)數(shù)-的實(shí)部和虛部相等,則m=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-1向量的概念及運(yùn)算(解析版) 題型:解答題
已知點(diǎn)G是△ABO的重心,M是AB邊的中點(diǎn).
(1)求++;
(2)若PQ過(guò)△ABO的重心G,且=a,=b,=ma,=nb,求證:+=3.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com