4.已知函數(shù)f(x)是定義在[-1,1]上的奇函數(shù),且函數(shù)f(x)在定義域上單調(diào)遞減,求不等式f(3-x)+f(2x-7)>0的解集.

分析 根據(jù)函數(shù)奇偶性和單調(diào)性的關(guān)系將不等式進(jìn)行轉(zhuǎn)化求解即可.

解答 解:∵函數(shù)奇函數(shù)f(x)的定義域?yàn)閇-1,1],且在定義域上單調(diào)遞減,
∴不等式f(3-x)+f(2x-7)>0等價(jià)為f(2x-7)>-f(3-x)=f(x-3),
即$\left\{\begin{array}{l}{-1≤3-x≤1}\\{-1≤2x-7≤1}\\{2x-7<x-3}\end{array}\right.$,
即$\left\{\begin{array}{l}{2≤x≤4}\\{3≤x≤4}\\{x<4}\end{array}\right.$,
得3≤x<4,
故不等式的解集為[3,4).

點(diǎn)評 本題主要考查不等式的求解,根據(jù)函數(shù)奇偶性將不等式進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.注意定義域的限制.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知全集U=R,集合A={x|-1<x<1},B={x|x2+2x≤0},則A∩B=( 。
A.(-1,0]B.[-2,1)C.[-2,-1)D.[0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x-2y≥0\\ x+y-3≤0\\ y≥0\end{array}\right.,則(x-2)_{\;}^2+(y+3)_{\;}^2$的最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某程序框圖如圖所示,若該程序運(yùn)行后輸出k的值是6,則輸入的整數(shù)S0的可能值為( 。
A.5B.6C.8D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)$f(\frac{1}{x}+2)$的定義域是{x|-1≤x≤3且x≠0},則函數(shù)f(x+2)的定義域?yàn)椋ā 。?table class="qanwser">A.{x|-3≤x≤1且x≠-2}B.$\{x|x≤-1或x≥\frac{1}{3}\}$C.{x|-1≤x≤3且x≠0}D.$\{x|-1≤x≤\frac{1}{3}且x≠0\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)過點(diǎn)(0,1),離心率為$\frac{{\sqrt{3}}}{2}$,
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)(m,0)作圓x2+y2=1的切線l交橢圓G于A,B兩點(diǎn),將|AB|表示為m的函數(shù),并求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知:橢圓C過點(diǎn)A(1,$\frac{3}{2}$),兩個(gè)焦點(diǎn)為(-1,0),(1,0).
(1)求橢圓C的方程;
(2)E,F(xiàn)是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線AE和AF關(guān)于x=1對稱,證明直線EF的斜率為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知cosα=$\frac{4}{5}$,cosβ=$\frac{3}{5}$,β∈($\frac{3π}{2}$,2π),且0<α<β,則sin(α+β)的值為(  )
A.1B.-1C.-$\frac{7}{25}$D.-1或-$\frac{7}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.等差數(shù)列{an}中,若a5=6,a3=2,則公差為( 。
A.2B.1C.-2D.-1

查看答案和解析>>

同步練習(xí)冊答案