【題目】已知函數(shù)fx=|2x+ |+a|x |

)當(dāng)a=﹣1時(shí),解不等式fx≤3x;

)當(dāng)a=2時(shí),若關(guān)于x的不等式2fx+1|1﹣b|的解集為空集,求實(shí)數(shù)b的取值范圍.

【答案】1 2[7,9]

【解析】試題分析:

(1)零點(diǎn)分段可得不等式的解集為;

(2)利用絕對(duì)值不等式的性質(zhì),原問(wèn)題轉(zhuǎn)化為|1b|≤8恒成立,據(jù)此可得實(shí)數(shù)b的取值范圍是[﹣79].

試題解析:

解:()當(dāng)a=﹣1時(shí),不等式fx=|2x+||x﹣|≤3x,

等價(jià)于;或;或

求得﹣x,解求得﹣x,解求得x,

故原不等式的解集為{x|x}

)當(dāng)a=2時(shí),若關(guān)于x的不等式2fx+1<|1﹣b|,即 2|2x+|+2|x﹣|+1<|1﹣b|,

即|4x+1|+|4x﹣6|+1<|1﹣b|

由于|4x+1|+|4x﹣6|≥|4x+14x﹣6|=7,∴|1﹣b|>7+1的解集為,即|1﹣b|≤8恒成立,

﹣8b﹣18,即﹣7b9,即要求的實(shí)數(shù)b的取值范圍為[﹣7,9]

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱ABC A1B1C1中,DE分別為AB,BC的中點(diǎn),點(diǎn)F在側(cè)棱B1B上,且B1DA1F,A1C1A1B1

(1) 求證:直線(xiàn)DE∥平面A1C1F

(2) 求證:平面B1DE⊥平面A1C1F

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某集團(tuán)公司為了獲得更大的收益,決定以后每年投入一筆資金用于廣告促銷(xiāo).經(jīng)過(guò)市場(chǎng)調(diào)查,每年投入廣告費(fèi)t百萬(wàn)元,可增加銷(xiāo)售額約(2t+ )百萬(wàn)元(t≥0).
(1)若公司當(dāng)年新增收益不少于1.5百萬(wàn)元,求每年投放廣告費(fèi)至少多少百萬(wàn)元?
(2)現(xiàn)公司準(zhǔn)備投入6百萬(wàn)元分別用于當(dāng)年廣告費(fèi)和新產(chǎn)品開(kāi)發(fā),經(jīng)預(yù)測(cè),每投入新產(chǎn)品開(kāi)發(fā)費(fèi)x百萬(wàn)元,可增加銷(xiāo)售額約( +3x+ )百萬(wàn)元,問(wèn)如何分配這筆資金,使該公司獲得新增收益最大?(新增收益=新增銷(xiāo)售額﹣投入)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)若直線(xiàn) 與曲線(xiàn)分別交于兩點(diǎn).設(shè)曲線(xiàn)

在點(diǎn)處的切線(xiàn)為, 在點(diǎn)處的切線(xiàn)為.

(。┊(dāng)時(shí),若 ,求的值;

(ⅱ)若,求的最大值;

(Ⅱ)設(shè)函數(shù)在其定義域內(nèi)恰有兩個(gè)不同的極值點(diǎn) ,且

,且恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a=﹣2 sin(x+ )dx,求二項(xiàng)式(x2+ 5的展開(kāi)式中x的系數(shù)及展開(kāi)式中各項(xiàng)系數(shù)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在棱長(zhǎng)為1的正方體ABCDA1B1C1D1中,E為棱BC的中點(diǎn),點(diǎn)F是棱CD上的動(dòng)點(diǎn),試確定點(diǎn)F的位置,使得D1E⊥平面AB1F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b,c分別是△ABC的三個(gè)內(nèi)角A,BC所對(duì)的邊,且滿(mǎn)足(2b﹣acosC=ccosA

)求角C的大小;

)設(shè),求y的最大值并判斷當(dāng)y取得最大值時(shí)ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)數(shù)學(xué)老師分別用兩種不同教學(xué)方式對(duì)入學(xué)數(shù)學(xué)平均分和優(yōu)秀率都相同的甲、乙兩個(gè)高一新班(人數(shù)均為 人)進(jìn)行教學(xué)(兩班的學(xué)生學(xué)習(xí)數(shù)學(xué)勤奮程度和自覺(jué)性一致),數(shù)學(xué)期終考試成績(jī)莖葉圖如下:

(1)現(xiàn)從乙班數(shù)學(xué)成績(jī)不低于 分的同學(xué)中隨機(jī)抽取兩名同學(xué),求至少有一名成績(jī)?yōu)?/span> 分的同學(xué)被抽中的概率;

(2)學(xué)校規(guī)定:成績(jī)不低于 分的優(yōu)秀,請(qǐng)?zhí)顚?xiě)下面的聯(lián)表,并判斷有多大把握認(rèn)為“成績(jī)優(yōu)秀與教學(xué)方式有關(guān)”.

附:參考公式及數(shù)據(jù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為大力提倡“厲行節(jié)儉,反對(duì)浪費(fèi)”,某高中通過(guò)隨機(jī)詢(xún)問(wèn)100名性別不同的學(xué)生是否做到“光盤(pán)”行動(dòng),得到如表所示聯(lián)表及附表:

做不到“光盤(pán)”行動(dòng)

做到“光盤(pán)”行動(dòng)

45

10

30

15

P(K2≥k0

0.10

0.05

0.025

k0

2.706

3.841

5.024

經(jīng)計(jì)算:K2= ≈3.03,參考附表,得到的正確結(jié)論是(
A.有95%的把握認(rèn)為“該學(xué)生能否做到光盤(pán)行到與性別有關(guān)”
B.有95%的把握認(rèn)為“該學(xué)生能否做到光盤(pán)行到與性別無(wú)關(guān)”
C.有90%的把握認(rèn)為“該學(xué)生能否做到光盤(pán)行到與性別有關(guān)”
D.有90%的把握認(rèn)為“該學(xué)生能否做到光盤(pán)行到與性別無(wú)關(guān)”

查看答案和解析>>

同步練習(xí)冊(cè)答案