設(shè)為拋物線 ()的焦點,為該拋物線上三點,若,且
(Ⅰ)求拋物線的方程;
(Ⅱ)點的坐標(biāo)為(,)其中,過點F作斜率為的直線與拋物線交于、兩點,、兩點的橫坐標(biāo)均不為,連結(jié)、并延長交拋物線于、兩點,設(shè)直線的斜率為.若,求的值.
(Ⅰ)(Ⅱ).
解析試題分析:(Ⅰ)利用向量和為0得到三點橫坐標(biāo)和的關(guān)系,結(jié)合三個向量的模為6得到的值,求出拋物線的方程;(Ⅱ)通過點坐標(biāo)表示斜率,設(shè)直線方程,聯(lián)立直線方程與拋物線方程利用韋達(dá)定理得到關(guān)于的方程,計算得到.
(Ⅰ)設(shè)
則 2分
, 所以 .
4分
所以,所以為所求. 5分
(Ⅱ)設(shè)
則,同理 7分
所以
設(shè)AC所在直線方程為,
聯(lián)立得,,所以, 9分
同理, .
所以 11分
設(shè)AB所在直線方程為,聯(lián)立得,,
所以 12分
考點:拋物線標(biāo)準(zhǔn)方程,直線與拋物線聯(lián)立,韋達(dá)定理應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知:直線與⊙C:()
(1)若直線與⊙C相交,求的取值范圍。
(2)在(1)的條件下,設(shè)直線與⊙C交于A、B兩點,若OA⊥OB,求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量a=,b=,且x∈.
(1)求a·b及|a+b|;
(2)若f(x)=a·b-2λ|a+b|的最小值為-,求正實數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知平面向量,,,其中,且函數(shù)的圖象過點.
(1)求的值;
(2)將函數(shù)圖象上各點的橫坐標(biāo)變?yōu)樵瓉淼牡?倍,縱坐標(biāo)不變,得到函數(shù)的圖象,求函數(shù)在上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知數(shù)列{an}的前n項和Sn=2n+1-2,等差數(shù)列{bn}中,b2=a2,且bn+3+bn-1=2bn+4,(n2,nN+),則bn=
A.2n+2 | B.2n | C.n-2 | D.2n-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖,第(1)個圖案由1個點組成,第(2)個圖案由3個點組成,第(3)個圖案由7個點組成,第(4)個圖案由13個點組成,第(5)個圖案由21個點組成,……,依此類推,根據(jù)圖案中點的排列規(guī)律,第100個圖形由多少個點組成( )
A.9900 | B.9901 | C.9902 | D.9903 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
在正項數(shù)列{an}中,若a1=1,且對所有n∈N*滿足nan+1-(n+1)an=0,則a2014=( )
A.1011 | B.1012 | C.2013 | D.2014 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com