18.已知f(x-1)=2x2-8x+11,則函數(shù)f(x)的解析式為f(x)=2x2-4x+5.

分析 設(shè)x-1=t,則x=t+1,由此能求出函數(shù)f(x)的解析式.

解答 解:f(x-1)=2x2-8x+11,
設(shè)x-1=t,則x=t+1,
∴f(t)=2(t+1)2-8(t+1)+11=2t2-4t+5,
∴f(x)=2x2-4x+5.
故答案為:f(x)=2x2-4x+5.

點(diǎn)評(píng) 本題考查函數(shù)的解析式的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意換元法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.下列命題:
①直線l平行于平面α內(nèi)的無(wú)數(shù)條直線,則l∥α;
②若直線a不在平面α內(nèi),則a∥α;
③若直線a∥b,直線b?α,則a?α;
④若直線a∥b,b?α,那么直線a就平行于平面α內(nèi)的無(wú)數(shù)條直線;
⑤若直線a∥b,b∥α,則a∥α;
⑥過(guò)直線外一點(diǎn),可以作無(wú)數(shù)個(gè)平面與這條直線平行;
⑦過(guò)平面外一點(diǎn)有無(wú)數(shù)條直線與這個(gè)平面平行;
⑧若一條直線與平面平行,則它與平面內(nèi)的任何直線都平行.
其中正確的命題是③⑥⑦.(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列四組函數(shù)中,相等的兩個(gè)函數(shù)是( 。
A.f(x)=x,$g(x)=\frac{x^2}{x}$B.$f(x)=\sqrt{x^2}$,$g(x)=\left\{\begin{array}{l}x,x≥0\\-x,x<0\end{array}\right.$
C.$f(x)={(\sqrt{x})^2}$,g(x)=xD.$f(x)=\sqrt{x^2}$,$g(x)=\root{3}{x^3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,sinA,sinB,sinC依次成等比數(shù)列,c=2a且$\overrightarrow{BA}$•$\overrightarrow{BC}$=24,則△ABC的面積是4$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)函數(shù)f(x)=(x-1)ex-kx2(k∈R).
(I)若函數(shù)在(1,f(1))處的切線過(guò)(0,1)點(diǎn),求k的值;
(II)當(dāng)k∈($\frac{1}{2}$,1]時(shí),試問(wèn),函數(shù)f(x)在[0,k]是否存在極大值或極小值,說(shuō)明理由..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知銳角θ滿足sin($\frac{θ}{2}$+$\frac{π}{6}$)=$\frac{2}{3}$,則cos(θ+$\frac{5π}{6}$)的值為( 。
A.-$\frac{1}{9}$B.$\frac{4\sqrt{5}}{9}$C.-$\frac{4\sqrt{5}}{9}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,四邊形ABCD是平行四邊形,AE⊥平面ABCD,EF∥AB,AB=2,BC=EF=1,AE=$\sqrt{6}$,DE=3,∠BAD=60°,G為BC的中點(diǎn).
(1)求證:FG∥平面BED;
(2)求證:平面BED⊥平面AED;
(3)求多面體EF-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=3+\sqrt{10}cosα}\\{y=1+\sqrt{10}sinα}\end{array}\right.$(α為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程.
(2)若直線l的極坐標(biāo)方程為ρsinθ-ρcosθ=2,求直線l被曲線C截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若雙曲線$\frac{x{\;}^{2}}{4}$-$\frac{y{\;}^{2}}{b{\;}^{2}}$=1(b>0)的漸近線方程為y=±$\frac{1}{2}$x,則右焦點(diǎn)坐標(biāo)為($\sqrt{5}$,0).

查看答案和解析>>

同步練習(xí)冊(cè)答案