變量x、y滿足線性約束條件
2x+y≤2
x+2y≤2
x≥0
y≥0
,則目標(biāo)函數(shù)z=x+y 的最大值為
 
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,求目標(biāo)函數(shù)z=x+y的最大值.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=x+y得y=-x+z,平移直線y=-x+z,
由圖象可知當(dāng)直線y=-x+z經(jīng)過點(diǎn)A時(shí),
直線y=-x+z的截距大小,此時(shí)z最大.
2x+y=2
x+2y=2
,
解得
x=
2
3
y=
2
3
,即A(
2
3
2
3
),
代入目標(biāo)函數(shù)z=x+y得z=
2
3
+
2
3
=
4
3

即目標(biāo)函數(shù)z=x+y的最大值為
4
3

故答案為:
4
3
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖是挑戰(zhàn)主持人大賽上,七位評(píng)委為某選手打出的分?jǐn)?shù)的莖葉統(tǒng)計(jì)圖,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的平均數(shù)和方差分別為( 。
A、84,4.84
B、84,1.6
C、85,1.6
D、85,4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知三菱柱ABC-A1B1C1的底面邊長(zhǎng)均為2,側(cè)菱B1B1與底面ABC所成角為
π
3
,當(dāng)側(cè)面ABB1A1垂直于底面ABC,平面B1AC垂直于底面ABC時(shí),三菱柱ABC-A1B1C1的側(cè)面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是首項(xiàng)為1,且滿足an+1=an+2,Sn表示{an}的前n項(xiàng)和.
(1)求an及Sn;
(2)設(shè){bn}是首項(xiàng)為2的等比數(shù)列,公比q滿足q2-(a4+1)q+S4=0,求{bn}的通項(xiàng)公式及其前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{xn}對(duì)任意n∈N*滿足(1+xn)(1-xn+1)=2,且x1=2,則x2015的值為( 。
A、-3
B、-2
C、2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的頂點(diǎn)B,C均在橢圓
x2
3
+y2=1上,頂點(diǎn)A是橢圓的一個(gè)焦點(diǎn),且橢圓的另一個(gè)焦點(diǎn)在BC邊上,則△ABC的周長(zhǎng)是(  )
A、4
3
B、6
C、2
3
D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

實(shí)數(shù)x,y滿足約束條件
5x+3y≤15
y≤x+1
x-5y≤3
,則目標(biāo)函數(shù)z=3x+5y的最大值為( 。
A、16B、15C、14D、17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若角α的終邊經(jīng)過點(diǎn)P(-1,
3
),則cosα的值為( 。
A、
3
2
B、
1
2
C、-
3
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos65°cos115°-cos25°sin115°=( 。
A、-1
B、0
C、1
D、-
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案