6.已知g(x)=f(x)+|x-1|是奇函數(shù),且f(-1)=1,則g(1)=-3.

分析 根據(jù)g(x)=f(x)+|x-1|是奇函數(shù),且f(-1)=1,則g(1)=-g(-1)=-[f(-1)+|-1-1|],即可求出g(1).

解答 解:∵g(x)=f(x)+|x-1|是奇函數(shù),且f(-1)=1,
∴g(1)=-g(-1)=-[f(-1)+|-1-1|]=-3,
故答案為-3.

點評 本題主要考查函數(shù)值的計算,利用函數(shù)奇偶性的性質(zhì)建立方程關(guān)系是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

16.設(shè)數(shù)列{an}的前n項和為Sn.且a1=1,an+an+1=$\frac{1}{{2}^{n}}$(n=1,2,3,…),則S2n+1=$\frac{4}{3}$[1-($\frac{1}{4}$)n+1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.設(shè)點G,M分別是△ABC的重心和外心,A(-1,0),B(1,0),且$\overrightarrow{GM}∥\overrightarrow{AB}$.
(1)求點C的軌跡E的方程;
(2)已知點$D(-\frac{1}{2},0)$,是否存在直線,使過點(0,1)并與曲線E交于P,Q兩點,且∠PDQ為鈍角.若存在,求出直線的斜率k的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設(shè)集合A=$\left\{{\left.x\right|y=\sqrt{1-x}}\right\}$,集合B={y|y=x2-4x+3},則集合A∩B=( 。
A.(-∞,1]B.[-1,+∞)C.[-1,1]D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設(shè)函數(shù)f(x)的定義域為R,若存在常數(shù)m>0,使|f(x)|≤m|x|對一切實數(shù)x均成立,則稱f(x)為“倍約束函數(shù)”.現(xiàn)給出下列函數(shù):①f(x)=0;②f(x)=x2;③f(x)=$\frac{x}{{x}^{2}+x+1}$;④f(x)是定義在實數(shù)集R上的奇函數(shù),且對一切x1,x2均有|f(x1)-f(x2)|≤2|x1-x2|.其中是“倍約束函數(shù)”的序號是( 。
A.①②④B.③④C.①④D.①③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.不等式|x-8|≥2的解集為{x|x≥10或x≤6}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知b<a<0,且a,b,2三個數(shù)可適當排序后成等差數(shù)列,也可適當排序后成等比數(shù)列,一條光線從點(a,b)射出,經(jīng)y軸反射與圓(x+4)2+(y-1)2=1相切,則反射光線所在的直線的斜率為( 。
A.-$\frac{5}{3}$或-$\frac{3}{5}$B.-$\frac{3}{2}$或-$\frac{2}{3}$C.-$\frac{5}{4}$或-$\frac{4}{5}$D.-$\frac{4}{3}$或-$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},則( 。
A.M∩N={ 4,6 }B.M∪N=UC.(∁UN )∪M=UD.(∁UM)∩N=N

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.如圖,曲線C1是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的一部分,F(xiàn)1,F(xiàn)2是其兩焦點.曲線C2是以原點O為頂點、F2為焦點的拋物線的一部分,A是曲線C1和C2的一個公共點,并且∠AF2F1為鈍角.我們把由曲線C1和C2合成的曲線C稱為“月食圓”.
①若|AF1|=7,|AF2|=5,則曲線C1、C2的方程分別為
$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{32}$=1(-6≤x≤3)、y2=8x(0≤x≤3)
②過F2作直線l,分別于“月食圓”依次交于B、C、D、E四點,若B(x1,y1),E(x2,y2),C(x3,y3),D(x4,y4),則x1x2x3x4為定值;
③過F2作直線l,分別于“月食圓”依次交于B、C、D、E四點,當l與x軸垂直時,$\frac{|CD|}{|BE|}$=$\frac{3}{4}$
④連接BF1,EF2,在△BF1F2中,記∠F1BF2=α,∠BF1F2=β,∠F1F2B=γ,則e=$\frac{sinα}{sinβ+sinγ}$.
以上說法正確的有①④.

查看答案和解析>>

同步練習冊答案