分析 由向量共線得到sinA(sinA+$\sqrt{3}$cosA)=-$\frac{1}{2}$,通過三角形函數(shù)的化簡,得到sin(2A-$\frac{π}{6}$)=-1,由于A∈(0,π),即可得出.
解答 解:向量$\overrightarrow{m}$=(sinA,-$\frac{1}{2}$)與向量$\overrightarrow{n}$=(1,sinA+$\sqrt{3}$cosA)共線,
∴sinA(sinA+$\sqrt{3}$cosA)=-$\frac{1}{2}$,
∴sin2A+$\sqrt{3}$sinAcoA=-$\frac{1}{2}$,
∴2sin2A-1+2$\sqrt{3}$sinAcoA=-2
∴-cos2A+$\sqrt{3}$sin2A=-2,
∴sin(2A-$\frac{π}{6}$)=-1,
∴2A-$\frac{π}{6}$=-$\frac{π}{2}$+2kπ,k∈Z,
∵A是△ABC的內(nèi)角
∴A=$\frac{5π}{6}$,
∴tanA=-$\frac{\sqrt{3}}{3}$,
故答案為:-$\frac{\sqrt{3}}{3}$
點(diǎn)評(píng) 本題考查了向量共線定理、和差化積、倍角公式、三角函數(shù)求值,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)f(x)在(m+1,+∞)上的值域?yàn)?(\frac{1}{2},1]$ | B. | 函數(shù)f(x)的圖象關(guān)于直線x=m對(duì)稱 | ||
C. | 函數(shù)f(x)在(m,+∞)是減函數(shù) | D. | 函數(shù)f(x)在(m+1,+∞)上的最小值為$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a≥0 | B. | a>4 | C. | 0<a<4 | D. | 0≤a<4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | 9 | C. | 8 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 0 | C. | -1 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x+2y-8=0 | B. | 2x-y-6=0 | C. | 2x+y-10=0 | D. | x-2y=0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com