【題目】(1)有物理、化學、生物三個學科競賽各設冠軍一名,現(xiàn)有人參賽可報任意學科并且所報學科數不限,則最終決出冠軍的結果共有多少種可能?
(2)有共個數,從中取個數排成一個五位數,要求奇數位上只能是奇數,則共可排成多少個五位數?
(3)有共個數,從中取個數排成一個五位數,要求奇數只在奇數位上,則共可排成多少個五位數?
科目:高中數學 來源: 題型:
【題目】已知橢圓: 的離心率為,直線交橢圓于、兩點,橢圓的右頂點為,且滿足.
(1)求橢圓的方程;
(2)若直線與橢圓交于不同兩點、,且定點滿足,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數的部分圖象大致是( )
A. B.
C. D.
【答案】D
【解析】當時, ,所以去掉A,B;
因為,所以,因此去掉C,選D.
點睛:有關函數圖象識別問題的常見題型及解題思路(1)由解析式確定函數圖象的判斷技巧:(1)由函數的定義域,判斷圖象左右的位置,由函數的值域,判斷圖象的上下位置;②由函數的單調性,判斷圖象的變化趨勢;③由函數的奇偶性,判斷圖象的對稱性;④由函數的周期性,判斷圖象的循環(huán)往復.(2)由實際情景探究函數圖象.關鍵是將問題轉化為熟悉的數學問題求解,要注意實際問題中的定義域問題.
【題型】單選題
【結束】
8
【題目】《九章算術》中,將底面是直角三角形的直三棱柱稱之為“塹堵”,已知某“塹堵”的三視圖如圖所示,則該“塹堵”的外接球的表面積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知三個內角所對的邊分別是,若.
(1)求角;
(2)若的外接圓半徑為2,求周長的最大值.
【答案】(1) ;(2) .
【解析】試題分析:(1)由正弦定理將邊角關系化為邊的關系,再根據余弦定理求角,(2)先根據正弦定理求邊,用角表示周長,根據兩角和正弦公式以及配角公式化為基本三角函數,最后根據正弦函數性質求最大值.
試題解析:(1)由正弦定理得,
∴,∴,即
因為,則.
(2)由正弦定理
∴, , ,
∴周長
∵,∴
∴當即時
∴當時, 周長的最大值為.
【題型】解答題
【結束】
18
【題目】經調查,3個成年人中就有一個高血壓,那么什么是高血壓?血壓多少是正常的?經國際衛(wèi)生組織對大量不同年齡的人群進行血壓調查,得出隨年齡變化,收縮壓的正常值變化情況如下表:
其中: , ,
(1)請畫出上表數據的散點圖;
(2)請根據上表提供的數據,用最小二乘法求出關于的線性回歸方程;(的值精確到0.01)
(3)若規(guī)定,一個人的收縮壓為標準值的0.9~1.06倍,則為血壓正常人群;收縮壓為標準值的1.06~1.12倍,則為輕度高血壓人群;收縮壓為標準值的1.12~1.20倍,則為中度高血壓人群;收縮壓為標準值的1.20倍及以上,則為高度高血壓人群.一位收縮壓為180mmHg的70歲的老人,屬于哪類人群?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,曲線在處的切線經過點.
(1)證明: ;
(2)若當時, ,求的取值范圍.
【答案】(1)證明見解析;(2) .
【解析】試題分析:(1)先根據導數幾何意義得切線斜率為,再根據切線過點,解得導數可得導函數零點,列表分析導函數符號變號規(guī)律可得函數單調性,根據函數單調性可得函數最小值為0,即得結論,(2)先化簡不等式為,分離得,再利用導數求函數單調性,利用羅伯特法則求最大值,即得的取值范圍.
試題解析:(1)曲線在處的切線為,即
由題意得,解得
所以
從而
因為當時, ,當時, .
所以在區(qū)間上是減函數,區(qū)間上是增函數,
從而.
(2)由題意知,當時, ,所以
從而當時, ,
由題意知,即,其中
設,其中
設,即,其中
則,其中
(1)當時,因為時, ,所以是增函數
從而當時, ,
所以是增函數,從而.
故當時符合題意.
(2)當時,因為時, ,
所以在區(qū)間上是減函數
從而當時,
所以在上是減函數,從而
故當時不符合題意.
(3)當時,因為時, ,所以是減函數
從而當時,
所以是減函數,從而
故當時不符合題意
綜上的取值范圍是.
【題型】解答題
【結束】
22
【題目】在直角坐標坐標系中,曲線的參數方程為(為參數),曲線: .以為極點, 軸的非負半軸為極軸,與直角坐標系取相同的長度單位,建立極坐標系.
(1)求曲線的極坐標方程;
(2)射線()與曲線的異于極點的交點為,與曲線的交點為,求.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為,長軸長為.
(1)求橢圓的方程;
(2)點是以長軸為直徑的圓上一點,圓在點處的切線交直線于點,求證:過點且垂直于直線的直線過橢圓的右焦點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的部分圖象如圖所示,則下列判斷正確的是( 。
A. 函數的圖象關于點對稱
B. 函數的圖象關于直線對稱
C. 函數的最小正周期為
D. 當時,函數的圖象與直線圍成的封閉圖形面積為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設點是所在平面內一點,下列說法正確的是( )
A.若,則的形狀為等邊三角形
B.若,則點是邊的中點
C.過任作一條直線,再分別過頂點作的垂線,垂足分別為,若恒成立,則點是的垂心
D.若則點在邊的延長線上
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對數函數g(x)=1ogax(a>0,a≠1)和指數函數f(x)=ax(a>0,a≠1)互為反函數.已知函數f(x)=3x,其反函數為y=g(x).
(Ⅰ)若函數g(kx2+2x+1)的定義域為R,求實數k的取值范圍;
(Ⅱ)若0<x1<x2且|g(x1)|=|g(x2)|,求4x1+x2的最小值;
(Ⅲ)定義在I上的函數F(x),如果滿足:對任意x∈I,總存在常數M>0,都有-M≤F(x)≤M成立,則稱函數F(x)是I上的有界函數,其中M為函數F(x)的上界.若函數h(x)=,當m≠0時,探求函數h(x)在x∈[0,1]上是否存在上界M,若存在,求出M的取值范圍,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com