已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的圖象上一個(gè)最高點(diǎn)為(2,3),與這個(gè)最高點(diǎn)相鄰的一個(gè)函數(shù)值為0的點(diǎn)是(6,0),則f(x)的解析式為( 。
A、f(x)=3sin(
π
8
x-
π
4
)
B、f(x)=3sin(
π
4
x-
π
4
)
C、f(x)=3sin(
π
8
x+
π
4
)
D、f(x)=3sin(
π
4
x+
π
4
)
分析:由題意先求A和T,求出ω,利用圖象上一個(gè)最高點(diǎn)為(2,3),求出φ,可得解析式.
解答:解:函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的圖象上一個(gè)最高點(diǎn)為(2,3),
與這個(gè)最高點(diǎn)相鄰的一個(gè)函數(shù)值為0的點(diǎn)是(6,0),
得A=3,
1
4
T=6-2=4
,有T=16=
ω
,∴ω=
π
8

f(x)=3sin(
π
8
x+φ)
,
最高點(diǎn)為(2,3),有3sin(
π
8
×2+φ)=3

sin(
π
4
+φ)=1
,又0<φ<π,∴ω=
π
4

f(x)=3sin(
π
8
x+
π
4
)

故選C.
點(diǎn)評(píng):本題考查y=Asin(ωx+φ)的圖象和解析式,考查學(xué)生發(fā)現(xiàn)問(wèn)題解決問(wèn)題的能力,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線(xiàn)的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過(guò)原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過(guò)點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿(mǎn)足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案