【題目】已知fx)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若任意的a、b∈[-1,1],當a+b≠0時,總有

(1)判斷函數(shù)fx)在[-1,1]上的單調(diào)性,并證明你的結(jié)論;

(2)解不等式:;

(3)若fx)≤m2-2pm+1對所有的x∈[-1,1]恒成立,其中p∈[-1,1](p是常數(shù)),試用常數(shù)p表示實數(shù)m的取值范圍.

【答案】1上是增函數(shù),證明如下:

任取,且,則,于是有,而,故,故上是增函數(shù)

2

3)由(1)知最大值為,所以要使對所有的恒成立,只需成立,即成立.

時,的取值范圍為;

時,的取值范圍為;

時,的取值范圍為R

【解析】

1上是增函數(shù),證明如下:

任取,且,則,于是有,而,故,故上是增函數(shù)

2)由上是增函數(shù)知:

故不等式的解集為

3)由(1)知最大值為,所以要使對所有的恒成立,只需成立,即成立.

時,的取值范圍為;

時,的取值范圍為;

時,的取值范圍為R

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)進行自主招生時,需要進行邏輯思維和閱讀表達兩項能力的測試.學(xué)校對參加測試的200名學(xué)生的邏輯思維成績、閱讀表達成績以及這兩項的總成績進行了排名.其中甲、乙、丙三位同學(xué)的排名情況如下圖所示:

得出下面四個結(jié)論:

①甲同學(xué)的閱讀表達成績排名比他的邏輯思維成績排名更靠前

②乙同學(xué)的邏輯思維成績排名比他的閱讀表達成績排名更靠前

③甲、乙、丙三位同學(xué)的邏輯思維成績排名中,甲同學(xué)更靠前

④乙同學(xué)的總成績排名比丙同學(xué)的總成績排名更靠前

則所有正確結(jié)論的序號是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在直角梯形ABCD中,AB∥CD,∠DAB=90°,點E、F分別在CD、AB上,且EF⊥CD,BE⊥BC,BC=1,CE=2.現(xiàn)將矩形ADEF沿EF折起,使平面ADEF與平面EFBC垂直(如圖2).

(1)求證:CD∥面ABF;
(2)當AF的長為何值時,二面角A﹣BC﹣F的大小為30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣1|+|x+a|,其中a為實常數(shù).
(1)若函數(shù)f(x)的最小值為2,求a的值;
(2)當x∈[0,1]時,不等式|x﹣2|≥f(x)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè), ,令, , .

1)寫出, , 的值,并猜想數(shù)列的通項公式;

2)用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓MA(-4,0),B(1,5),C(6,0)三點.

(Ⅰ)求圓M的方程

(Ⅱ)若直線ax-y+5=0(a>0)與圓M相交于P,Q兩點,是否存在實數(shù)a,使得弦PQ的垂直平分線l過點E(-2,4),若存在,求出實數(shù)a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)吃粽子是我國的傳統(tǒng)習(xí)俗,設(shè)一盤中裝有個粽子,其中豆沙粽個,肉粽個,白粽個,這三種粽子的外觀完全相同,從中任意選取

)求三種粽子各取到個的概率.

)設(shè)表示取到的豆沙粽個數(shù),求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐中, 平面, ,且, , 的中點.

1)求異面直線所成角的大;

2)求點D到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cos2x﹣sin2xsinφ﹣2cos2xsin2 (0<φ< )的圖象的一個對稱中心為( ,0),則下列說法不正確的是(
A.直線x= π是函數(shù)f(x)的圖象的一條對稱軸
B.函數(shù)f(x)在[0, ]上單調(diào)遞減
C.函數(shù)f(x)的圖象向右平移 個單位可得到y(tǒng)=cos2x的圖象
D.函數(shù)f(x)在x∈[0, ]上的最小值為﹣1

查看答案和解析>>

同步練習(xí)冊答案