【題目】端午節(jié)吃粽子是我國的傳統(tǒng)習(xí)俗,設(shè)一盤中裝有個粽子,其中豆沙粽個,肉粽個,白粽個,這三種粽子的外觀完全相同,從中任意選取

)求三種粽子各取到個的概率.

)設(shè)表示取到的豆沙粽個數(shù),求的分布列與數(shù)學(xué)期望.

【答案】(1) ;(2)見解析.

【解析】試題分析:()根據(jù)古典概型的概率公式進行計算即可;()隨機變量X的取值為:0,1,2,別求出對應(yīng)的概率,即可求出分布列和期望

試題解析:(1)令A表示事件三種粽子各取到1,由古典概型的概率計算公式有

PA)=.

2X的可能取值為0,1,2,且

PX0)=,

PX1)=,

PX2)=

綜上知,X的分布列為:

X

0

1

2

P




EX)=(個)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了展示中華漢字的無窮魅力,傳遞傳統(tǒng)文化,提高學(xué)習(xí)熱情,某校開展《中國漢字聽寫大會》的活動.為響應(yīng)學(xué)校號召,2(9)班組建了興趣班,根據(jù)甲、乙兩人近期8次成績畫出莖葉圖,如圖所示,甲的成績中有一個數(shù)的個位數(shù)字模糊,在莖葉圖中用表示.(把頻率當作概率).

(1)假設(shè),現(xiàn)要從甲、乙兩人中選派一人參加比賽,從統(tǒng)計學(xué)的角度,你認為派哪位學(xué)生參加比較合適?

(2)假設(shè)數(shù)字的取值是隨機的,求乙的平均分高于甲的平均分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個命題中:

①命題“若x≥2且y≥3,則x+y≥5”為假命題.

②命題“若x2-4x+3=0,則x=3”的逆否命題為:“若x≠3,則x2-4x+3≠0”.

③“x>1”是“|x|>0”的充分不必要條件

④關(guān)于x的不等式|x+1|+|x-3|≥m的解集為R,則m≤4.

其中所有正確命題的序號是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知fx)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若任意的a、b∈[-1,1],當a+b≠0時,總有

(1)判斷函數(shù)fx)在[-1,1]上的單調(diào)性,并證明你的結(jié)論;

(2)解不等式:;

(3)若fx)≤m2-2pm+1對所有的x∈[-1,1]恒成立,其中p∈[-1,1](p是常數(shù)),試用常數(shù)p表示實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足f(4)=1,f′(x)f(x)的導(dǎo)函數(shù),已知y=f′(x)的圖象如圖所示,若兩個正數(shù)a,b滿足f(2a+b)<1,的取值范圍是____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求的值;

(2)若函數(shù)在區(qū)間是單調(diào)遞增函數(shù),求實數(shù)的取值范圍;

(3)若關(guān)于的方程在區(qū)間內(nèi)有兩個實數(shù)根,,求實數(shù)的取值范圍 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過橢圓上一點M作圓的兩條切線,切點為A、B,過AB的直線與軸和軸分別交于,則面積的最小值為( )

A. B. 1 C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,滿足c=1,且cosBsinC+(a﹣sinB)cos(A+B)=0
(1)求C的大小;
(2)求a2+b2的最大值,并求取得最大值時角A,B的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足:a1= ,an+1= (n∈N*).
(1)求a2 , a3的值;
(2)證明:不等式0<an<an+1對于任意n∈N*都成立.

查看答案和解析>>

同步練習(xí)冊答案