17.解下列不等式:
(1)|2x-1|<x;                   
(2)|2x-3|+|x-1|≥5.

分析 (1)(2)通過討論x的范圍解出各個區(qū)間上的x的范圍,取并集即可.

解答 解:(1)x≥$\frac{1}{2}$時,2x-1<x,解得:x<1,
x<$\frac{1}{2}$時,1-2x<x,解得:x>$\frac{1}{3}$,
∴不等式的解集是:{x|$\frac{1}{3}<x<1$};  …(4分)
(2)原不等式可化為:
$\left\{\begin{array}{l}{x≥\frac{3}{2}}\\{2x-3+x-1≥5}\end{array}\right.$或$\left\{\begin{array}{l}{1<x<\frac{3}{2}}\\{3-2x+x-1≥5}\end{array}\right.$或$\left\{\begin{array}{l}{x≤1}\\{3-2x+1-x≥5}\end{array}\right.$
解得:$x≤-\frac{1}{3}$或x≥3.

點評 本題考查了絕對值不等式的解法,考查分類討論思想,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB=AD=4AP,∠BAD=∠PAD=60°,E,F(xiàn)分別是AP,AD的中點.
(1)求證:平面BEF⊥平面PAD;
(2)求二面角P-BE-F的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知集合A={x|-5<x≤$\frac{3}{2}$},B={x|x<1或x>2},U=R.
(Ⅰ)求A∩B;
(Ⅱ)求A∩(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.48B.4C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.一塊石材表示的幾何體的三視圖如圖所示,將該石材切削、打磨,加工成球,則能得到的最大球的表面積等于( 。
A.$\frac{32π}{3}$B.16πC.32πD.$\frac{16π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.運行下面的程序,若x=1,則輸出的y=6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某市統(tǒng)計局就某地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖如圖所示.(每個分組包括左端點,不包括右端點,如第一組表示[1000,1500).
(1)求居民收入在[2000,3000)的頻率;
(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);
(3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這10 000人中按分層抽樣方法抽出100人作進一步分析,則月收入在[2000,3000)的這段應(yīng)抽取多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=m-|x-3|,不等式f(x)>2的解集為(2,4).
(1)求實數(shù)m值;
(2)若關(guān)于x的不等式|x-a|≥f(x)在R上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知雙曲線方程為$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1,其右焦點為F.
(1)求以F為焦點,以雙曲線中心為頂點的拋物線方程;
(2)若直線y=2x+m,被拋物線所截的弦長的|AB|=$\sqrt{85}$,求m的值.

查看答案和解析>>

同步練習(xí)冊答案