【題目】函數(shù)f(x)=x2+2x﹣3,x∈[﹣2,1],函數(shù)f(x)的值域?yàn)?/span>

【答案】[﹣4,0]
【解析】解:由題意:函數(shù)f(x)=x2+2x﹣3=(x+1)2﹣4.
開口向上,對稱軸x=﹣1,
∵x∈[﹣2,1],
根據(jù)二次函數(shù)的圖象及性質(zhì)可得:
當(dāng)x=﹣1時(shí),函數(shù)f(x)取得最小值為﹣4;
當(dāng)x=1時(shí),函數(shù)f(x)取得最大值為0;
∴函數(shù)f(x)=x2+2x﹣3,x∈[﹣2,1]的值域?yàn)閇﹣4,0];
所以答案是[﹣4,0].
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)的值域,需要了解求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最小(大)數(shù),這個(gè)數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)A,B在圓O:x2+y2=4上,弦AB的中點(diǎn)為D(1,1),則直線AB的方程是(
A.x﹣y=0
B.x+y=0
C.x﹣y﹣2=0
D.x+y﹣2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“sinα=cosα”是“cos2α=0”的(
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)x∈R,則“x>1“是“x3>1”的(
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的奇函數(shù)f(x),當(dāng)x>0時(shí),f(x)=﹣x2+2x﹣3.
當(dāng)x∈[2,4]時(shí),求f(x)的值域;
當(dāng)f(m)=6時(shí),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x),x∈R,對于任意的x,y∈R,f(x﹣y)=f(x)﹣f(y),當(dāng)x>0時(shí),f(x)>0.
(1)求證:f(0)=0,且f(x)是奇函數(shù);
(2)求證:y=f(x),x∈R是增函數(shù);
(3)設(shè)f(1)=2,求f(x)在x∈[﹣5,5]時(shí)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=loga(x﹣1)﹣1(a>0且a≠1)必過定點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=x2﹣2x+3,﹣1≤x≤2的值域是(
A.R
B.[3,6]
C.[2,6]
D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(﹣2,0),B(2,0),若圓(x﹣3)2+y2=r2(r>0)上存在點(diǎn)P(不同于點(diǎn)A,B)使得PA⊥PB,則實(shí)數(shù)r的取值范圍是(
A.(1,5)
B.[1,5]
C.(1,3]
D.[3,5]

查看答案和解析>>

同步練習(xí)冊答案