【題目】已知是函數(shù)
的零點(diǎn),
.
(1)求實(shí)數(shù)的值;
(2)若不等式在
上恒成立,求實(shí)數(shù)
的取值范圍;
(3)若方程有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)
的取值范圍.
【答案】(Ⅰ)1;(Ⅱ);(Ⅲ)
.
【解析】
Ⅰ
利用
是函數(shù)
的零點(diǎn),代入解析式即可求實(shí)數(shù)
的值;
Ⅱ
由不等式
在
上恒成立,利用參數(shù)分類(lèi)法,轉(zhuǎn)化為二次函數(shù)求最值問(wèn)題,即可求實(shí)數(shù)
的取值范圍;
Ⅲ
原方程等價(jià)于
,利用換元法,轉(zhuǎn)化為一元二次方程根的個(gè)數(shù)進(jìn)行求解即可.
Ⅰ
是函數(shù)
的零點(diǎn),
,得
;
Ⅱ
,
,
則不等式在
上恒成立,
等價(jià)為,
,
同時(shí)除以
,得
,
令,則
,
,
,
故的最小值為0,
則,即實(shí)數(shù)k的取值范圍
;
Ⅲ
原方程等價(jià)為
,
,
兩邊同乘以
得
,
此方程有三個(gè)不同的實(shí)數(shù)解,
令,則
,
則,
得或
,
當(dāng)時(shí),
,得
,
當(dāng),要使方程
有三個(gè)不同的實(shí)數(shù)解,
則必須有有兩個(gè)解,
則,得
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合,
.
(1)當(dāng)m=4時(shí),求,
;
(2)若,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】交強(qiáng)險(xiǎn)是車(chē)主必須為機(jī)動(dòng)車(chē)購(gòu)買(mǎi)的險(xiǎn)種,若普通6座以下私家車(chē)投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車(chē)輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如下表:
交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表 | ||
浮動(dòng)因素 | 浮動(dòng)比率 | |
上一個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% | |
上兩個(gè)年度未發(fā)生責(zé)任道路交通事故 | 下浮20% | |
上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% | |
上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% | |
上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 | 上浮10% | |
上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮30% |
某機(jī)購(gòu)為了研究某一品牌普通6座以下私家車(chē)的投保情況,隨機(jī)抽取了60輛車(chē)齡已滿(mǎn)三年的該品牌同型號(hào)私家車(chē)的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:
類(lèi)型 | ||||||
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
(1)求一輛普通6座以下私家車(chē)在第四年續(xù)保時(shí)保費(fèi)高于基本保費(fèi)的頻率;
(2)某二手車(chē)銷(xiāo)售商專(zhuān)門(mén)銷(xiāo)售這一品牌的二手車(chē),且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車(chē)輛記為事故車(chē),假設(shè)購(gòu)進(jìn)一輛事故車(chē)虧損5000元,一輛非事用戶(hù)車(chē)盈利10000元,且各種投保類(lèi)型車(chē)的頻率與上述機(jī)構(gòu)調(diào)查的頻率一致,完成下列問(wèn)題:
①若該銷(xiāo)售商店內(nèi)有六輛(車(chē)齡已滿(mǎn)三年)該品牌二手車(chē),某顧客欲在店內(nèi)隨機(jī)挑選兩輛車(chē),求這兩輛車(chē)恰好有一輛為事故車(chē)的概率;
②若該銷(xiāo)售商一次購(gòu)進(jìn)120輛(車(chē)齡已滿(mǎn)三年)該品牌二手車(chē),求一輛車(chē)盈利的平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和爸爸媽媽、爺爺奶奶一同參加《中國(guó)詩(shī)詞大會(huì)》的現(xiàn)場(chǎng)錄制,5人坐成一排.若小 明的父母至少有一人與小明相鄰,則不同的坐法總數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為3的正方形所在的平面與等腰直角三角形
所在的平面互相垂直,
,設(shè)
.
(1)求證:平面
;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為
和
,過(guò)點(diǎn)
的直線(xiàn)與橢圓相交與
兩點(diǎn),且
.
(1)求橢圓的離心率;
(2)求直線(xiàn)的斜率;
(3)設(shè)點(diǎn)與點(diǎn)
關(guān)于坐標(biāo)原點(diǎn)對(duì)稱(chēng),直線(xiàn)
上有一點(diǎn)
在
的外接圓上,且
,求橢圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象過(guò)點(diǎn)
.
(1)求的值并求函數(shù)
的值域;
(2)若關(guān)于的方程
在
有實(shí)根,求實(shí)數(shù)
的取值范圍;
(3)若函數(shù),則是否存在實(shí)數(shù)
,對(duì)任意
,存在
使
成立?若存在,求出
的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),隨著汽車(chē)消費(fèi)水平的提高,二手車(chē)流通行業(yè)得到迅猛發(fā)展.某汽車(chē)交易市場(chǎng)對(duì)2017 年成交的二手車(chē)的交易前的使用時(shí)間(以下簡(jiǎn)稱(chēng)“使用時(shí)間”)進(jìn)行統(tǒng)計(jì),得到頻率分布直方圖如圖1.在圖1對(duì)使用時(shí)間的分組中,將使用時(shí)間落入各組的頻率視為概率.
(1)記“在2017年成交的二手車(chē)中隨機(jī)選取一輛,該車(chē)的使用年限在”,為事件
,試估計(jì)
的概率;
(2)根據(jù)該汽車(chē)交易市場(chǎng)的歷史資料,得到散點(diǎn)圖如圖,其中 (單位:年)表示二手車(chē)的使用時(shí)間,
(單位:萬(wàn)元)表示相應(yīng)的二手車(chē)的平均交易價(jià)格.
由散點(diǎn)圖判斷,可采用作為二手車(chē)平均交易價(jià)格
關(guān)于其使用年限
的回歸方程,相關(guān)數(shù)據(jù)如下表(表中
):
①根據(jù)回歸方程類(lèi)型及表中數(shù)據(jù),建立關(guān)于
的回歸方程;
②該汽車(chē)交易市場(chǎng)對(duì)使用8年以?xún)?nèi)(含8年)的二手車(chē)收取成交價(jià)格的傭金,對(duì)使用時(shí)間8年以上(不含 8年)的二手車(chē)收取成交價(jià)格
的傭金. 在圖1對(duì)使用時(shí)間的分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)值.若以2017年的數(shù)據(jù)作為決策依據(jù),計(jì)算該汽車(chē)交易市場(chǎng)對(duì)成交的每輛車(chē)收取的平均傭金.
附注:①對(duì)于一組數(shù)據(jù),其回歸直線(xiàn)
的斜率和截距的最小二乘估計(jì)分別為
,
;
②參考數(shù)據(jù):,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線(xiàn)
的參數(shù)方程為
(
為參數(shù)).在以原點(diǎn)
為極點(diǎn),
軸正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)
的極坐標(biāo)方程為
.
(1)求直線(xiàn)的極坐標(biāo)方程和曲線(xiàn)
的直角坐標(biāo)方程;
(2)若直線(xiàn)與曲線(xiàn)
交于
兩點(diǎn),求
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com