【題目】設(shè)f(x)是定義在R上的函數(shù),對m,n∈R,恒有f(m+n)=f(m)·f(n)(f(m)≠0,f(n)≠0),且當x>0時,0<f(x)<1.
(1)求證f(0)=1;
(2)求證x∈R時,恒有f(x)>0;
(3)求證f(x)在R上是減函數(shù).
【答案】(1)根據(jù)題意,令m=0,可得f(0+n)=f(0)·f(n),
因為f(n)≠0,所以f(0)=1.
(2)由題意知x>0時,0<f(x)<1,當x=0時,f(0)=1>0,當x<0時,-x>0,所以0<f(-x)<1.因為f[x+(-x)]=f(x)·f(-x),所以f(x)·f(-x)=1,
所以f(x)=>0.故x∈R時,恒有f(x)>0.
(3)設(shè)x1,x2∈R,且x1<x2,則f(x2)=f[x1+(x2-x1)],
所以f(x2)-f(x1)=f[x1+(x2-x1)]-f(x1)=f(x1)·f(x2-x1)-f(x1)=f(x1)[f(x2-x1)-1].由(2)知f(x1)>0,又x2-x1>0,所以0<f(x2-x1)<1,
故f(x2)-f(x1)<0,所以f(x)在R上是減函數(shù).
【解析】
(1)對函數(shù)進行賦值,即可證得結(jié)論;
(2)由于已知部分定義域內(nèi)函數(shù)值的范圍,故分區(qū)間討論,結(jié)合已知等式,將其他區(qū)間內(nèi)的范圍與已知函數(shù)值結(jié)合討論;
(3)證明單調(diào)性需根據(jù)定義去求,假設(shè) 結(jié)合等式,構(gòu)造的形式,判斷符號即可證出單調(diào)性.
證明:(1)根據(jù)題意,令m=0,
可得f(0+n)=f(0)·f(n),
因為f(n)≠0,所以f(0)=1.
(2)由題意知x>0時,0<f(x)<1,
當x=0時,f(0)=1>0,
當x<0時,-x>0,所以0<f(-x)<1.
因為f[x+(-x)]=f(x)·f(-x),
所以f(x)·f(-x)=1,
所以f(x)=>0
故x∈R時,恒有f(x)>0.
(3)設(shè)x1,x2∈R,且x1<x2,
則f(x2)=f[x1+(x2-x1)],
所以f(x2)-f(x1)=f[x1+(x2-x1)]-f(x1)=f(x1)·f(x2-x1)-f(x1)=f(x1)[f(x2-x1)-1].
由(2)知f(x1)>0,又x2-x1>0,
所以0<f(x2-x1)<1,
故f(x2)-f(x1)<0,所以f(x)在R上是減函數(shù).
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示程序框圖是用“二分法”求方程的近似解的算法,有下列判斷:
①若則輸出的值在之間;
②若則程序執(zhí)行完畢將沒有值輸出;
③若則程序框圖最下面的判斷框剛好執(zhí)行8次程序就結(jié)束.
其中正確命題的個數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知p:x∈A={x|x2﹣2x﹣3≤0,x∈R},q:x∈B={x|x2﹣2mx+m2﹣9≤0,x∈R,m∈R}.
(1)若A∩B=[1,3],求實數(shù)m的值;
(2)若p是q的充分條件,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l1:ax+by+1=0(a,b不同時為0),l2:(a-2)x+y+a=0,
(1)若b=0,且l1⊥l2,求實數(shù)a的值;
(2)當b=3,且l1∥l2時,求直線l1與l2之間的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列各組中的兩個集合相等的有( )
①P={x|x=2n,n∈Z},Q={x|x=2(n-1),n∈Z};
②P={x|x=2n-1,n∈N*},Q={x|x=2n+1,n∈N*};
③P={x|x2-x=0},Q=.
A. ①②③ B. ①③
C. ②③ D. ①②
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某手機廠商推出一款6寸大屏手機,現(xiàn)對500名該手機使用者(200名女性,300名男性)進行調(diào)查,對手機進行打分,打分的頻數(shù)分布表如下:
女性用戶 | 分值區(qū)間 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
頻數(shù) | 20 | 40 | 80 | 50 | 10 | |
男性用戶 | 分值區(qū)間 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
頻數(shù) | 45 | 75 | 90 | 60 | 30 |
(Ⅰ)完成下列頻率分布直方圖,并比較女性用戶和男性用戶評分的波動大。ú挥嬎憔唧w值,給出結(jié)論即可);
(Ⅱ)根據(jù)評分的不同,運用分層抽樣從男性用戶中抽取20名用戶,在這20名用戶中,從評分不低于80分的用戶中任意抽取3名用戶,求3名用戶中評分小于90分的人數(shù)的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲乙兩人玩卡片游戲:他們手里都拿著分別標有數(shù)字1,2,3,4,5,6的6張卡片,各自從自己的卡片中隨機抽出1張,規(guī)定兩人誰抽出的卡片上的數(shù)字大,誰就獲勝,數(shù)字相同則為平局.
(1)求甲獲勝的概率.
(2)現(xiàn)已知他們都抽出了標有數(shù)字6的卡片,為了分出勝負,他們決定從手里剩下的卡片中再各自隨機抽出1張,若他們這次抽出的卡片上數(shù)字之和為偶數(shù),則甲獲勝,否則乙獲勝.請問:這個規(guī)則公平嗎,為什么 ?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)列的前項和為,已知(),且.
(1)證明為等比數(shù)列,并求數(shù)列的通項公式;
(2)設(shè),且證明;
(3)在(2)小問的條件下,若對任意的,不等式恒成立,試求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),且.
(1)判斷函數(shù)的奇偶性;
(2) 判斷函數(shù)在(1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論;
(3)若,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com