【題目】已知函數(shù),且

(1)判斷函數(shù)的奇偶性;

(2) 判斷函數(shù)(1,+)上的單調(diào)性,并用定義證明你的結(jié)論;

(3)求實(shí)數(shù)a的取值范圍

【答案】(1)f(x)為奇函數(shù);(2)見解析;(3)(0,1)∪(1,+∞).

【解析】本題考查函數(shù)的性質(zhì),考查學(xué)生的計(jì)算能力,證明函數(shù)的單調(diào)性按照取值、作差、變形定號(hào),下結(jié)論的步驟進(jìn)行.

1)函數(shù)為奇函數(shù).確定函數(shù)的定義域,利用奇函數(shù)的定義,即可得到結(jié)論;

2)按照取值、作差、變形定號(hào),下結(jié)論的步驟進(jìn)行證明,作差后要因式分解.

3)根據(jù)函數(shù)單調(diào)性,得到不等式的解集。

,且

,解得

(1) 為奇函數(shù),

證:,定義域?yàn)?/span>,關(guān)于原點(diǎn)對(duì)稱

所以為奇函數(shù)

2上的單調(diào)遞增

證明:設(shè),

,即, 上的單調(diào)遞增

,即,所以可知

又由的對(duì)稱性可知時(shí), 同樣成立

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在R上的函數(shù),對(duì)m,n∈R,恒有f(mn)=f(mf(n)(f(m)≠0,f(n)≠0),且當(dāng)x>0時(shí),0<f(x)<1.

(1)求證f(0)=1;

(2)求證x∈R時(shí),恒有f(x)>0;

(3)求證f(x)在R上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓 的左頂點(diǎn)為,點(diǎn)是橢圓上的兩個(gè)動(dòng)點(diǎn),若直線 的斜率乘積為定值,則動(dòng)直線恒過定點(diǎn)的坐標(biāo)為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面為正方形, 底面, 為棱的中點(diǎn).

1)證明: ;

2)求直線與平面所成角的正弦值;

3)若中點(diǎn),棱上是否存在一點(diǎn),使得,若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】旅游社為某旅游團(tuán)包飛機(jī)去旅游,其中旅行社的包機(jī)費(fèi)為15 000元.旅游團(tuán)中每人的飛機(jī)票按以下方式與旅行社結(jié)算:若旅游團(tuán)人數(shù)在30人或30人以下,飛機(jī)票每張收費(fèi)900元;若旅游團(tuán)人數(shù)多于30,則給予優(yōu)惠每多1,機(jī)票費(fèi)每張減少10,但旅游團(tuán)人數(shù)最多為75人.

(1)寫出飛機(jī)票的價(jià)格關(guān)于旅游團(tuán)人數(shù)的函數(shù);

(2)旅游團(tuán)人數(shù)為多少時(shí)旅行社可獲得最大利潤(rùn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長(zhǎng)為1的正方體ABCD﹣A1B1C1D1的對(duì)角線AC1上任取一點(diǎn)P,以A為球心,AP為半徑作一個(gè)球.設(shè)AP=x,記該球面與正方體表面的交線的長(zhǎng)度和為f(x),則函數(shù)f(x)的圖象最有可能的是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計(jì)劃在甲、乙兩座城市共投資120萬(wàn)元,根據(jù)行業(yè)規(guī)定,每個(gè)城市至少要投資40萬(wàn)元,由前期市場(chǎng)調(diào)研可知:甲城市收益P與投入(單位:萬(wàn)元)滿足,乙城市收益Q與投入(單位:萬(wàn)元)滿足,設(shè)甲城市的投入為(單位:萬(wàn)元),兩個(gè)城市的總收益為(單位:萬(wàn)元).

(1)當(dāng)甲城市投資50萬(wàn)元時(shí),求此時(shí)公司總收益;

(2)試問如何安排甲、乙兩個(gè)城市的投資,才能使總收益最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校有兩個(gè)參加國(guó)際中學(xué)生交流活動(dòng)的代表名額,為此該學(xué)校高中部推薦2男1女三名候選人,初中部也推薦了1男2女三名候選人。若從6名學(xué)生中人選2人做代表。

求:(1)選出的2名同學(xué)來自不同年相級(jí)部且性別同的概率;

(2)選出的2名同學(xué)都來自高中部或都來自初中部的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的首項(xiàng)a是常數(shù)),).

1,,并判斷是否存在實(shí)數(shù)a使成等差數(shù)列.若存在,求出的通項(xiàng)公式;若不存在,說明理由;

2)設(shè),),為數(shù)列的前n項(xiàng)和,求

查看答案和解析>>

同步練習(xí)冊(cè)答案