2.華為推出一款6寸大屏手機(jī),現(xiàn)對(duì)500名該手機(jī)使用者(200名女性,300名男性)進(jìn)行調(diào)查,對(duì)手機(jī)進(jìn)行打分,打分的頻數(shù)分布表如下:
女性用戶:
分值區(qū)間[50,60)[60,70)[70,80)[80,90)[90,100)
頻數(shù)2040805010
男性用戶:
分值區(qū)間[50,60)[60,70)[70,80)[80,90)[90,100)
頻數(shù)4575906030
(1)如果評(píng)分不低于70分,就表示該用戶對(duì)手機(jī)“認(rèn)可”,否則就表示“不認(rèn)可”,完成下列2×2列聯(lián)表,并回答是否有95%的把握認(rèn)為性別對(duì)手機(jī)的“認(rèn)可”有關(guān):
女性用戶男性用戶合計(jì)
“認(rèn)可”手機(jī)140180320
“不認(rèn)可”手機(jī)60120180
合計(jì)200300500
附:
P(K2≧k)0.050.01
k3.8416.635
K2=$\frac{n(a+d-b+c)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
(2)根據(jù)評(píng)分的不同,運(yùn)動(dòng)分層抽樣從男性用戶中抽取20名用戶,在這20名用戶中,從評(píng)分不低于80
分的用戶中任意抽取3名用戶,求3名用戶中評(píng)分小于90分的人數(shù)的分布列和數(shù)學(xué)期望.

分析 (Ⅰ)由女性用戶和男性用戶的頻數(shù)分布表可得:頻率分布表,進(jìn)而得出波動(dòng)大。
(II)利用“列聯(lián)表”及其計(jì)算公式可得K2,即可得出結(jié)論.
(Ⅲ)運(yùn)用分層抽樣從男性用戶中抽取20名用戶,評(píng)分不低于8(0分)有6人,其中評(píng)分小于9(0分)的人數(shù)為4,記為A,B,C,D,評(píng)分不小于9(0分)的人數(shù)為2,記為,從6人中任取2人,通過列表即可得出.

解答 解:(Ⅰ)女性用戶和男性用戶的頻率分布表分別如下左、右圖:
由圖可得女性用戶的波動(dòng)小,男性用戶的波動(dòng)大.…(4分)
(Ⅱ)2×2列聯(lián)表如下圖:

女性用戶男性用戶合計(jì)
“認(rèn)可”手機(jī)140180320
“不認(rèn)可”手機(jī)60120180
合計(jì)200300500
K2=$\frac{500(140×120-180×60)^{2}}{200×300×320×180}$≈5.208>3.841,所以有95%的把握認(rèn)為性別和對(duì)手機(jī)的“認(rèn)可”有關(guān).…(8分)
(Ⅲ)運(yùn)用分層抽樣從男性用戶中抽取20名用戶,評(píng)分不低于8(0分)有6人,其中評(píng)分小于9(0分)的人數(shù)為4,記為A,B,C,D,評(píng)分不小于9(0分)的人數(shù)為2,記為,從6人中任取2人,
基本事件空間為Ω={(AB),(AC),(AD),(Aa),(Ab),(BC),(BD),(Ba),(Bb),(CD),(Ca),(Cb),(Da),(Db),(ab)},共有15個(gè)元素.
其中把“兩名用戶評(píng)分都小于9(0分)”記作M,
則M={(AB),(AC),(AD),(BC),(BD),(CD)},共有6個(gè)元素.
所以兩名用戶評(píng)分都小于9(0分)的概率為$\frac{6}{15}=\frac{2}{5}$.…(12分)

點(diǎn)評(píng) 本題考查了頻數(shù)分布表、頻率分布表、“列聯(lián)表”、獨(dú)立性檢驗(yàn)計(jì)算公式、分層抽樣、古典概率計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖1,在等腰梯形PDCB中,PB∥DC,PB=3,DC=1,∠DPB=45°,DA⊥PB于點(diǎn)A,將△PAD沿AD折起,構(gòu)成如圖2所示的四棱錐P-ABCD,點(diǎn)M的棱PB上,且PM=$\frac{1}{2}$MB.
(1)求證:PD||平面MAC;
(2)若平面PAD⊥平面ABCD,求點(diǎn)A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=ax+xlnx的圖象在點(diǎn)x=e(e為自然對(duì)數(shù)的底數(shù))處的切線斜率為3.
(1)求實(shí)數(shù)a的值;
(2)當(dāng)x>1時(shí),求證f(x)>3(x-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.將函數(shù)$y=sin({x-\frac{π}{3}})$的圖象上每點(diǎn)的橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍(縱坐標(biāo)不變),得到函數(shù)y=f(x)的圖象.
(1)求函數(shù)f(x)的解析式及其圖象的對(duì)稱軸方程;
(2)在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c.若$f(A)=\frac{{\sqrt{3}}}{2},a=2,b=\frac{{2\sqrt{3}}}{3}$,求sinB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知a<0,x,y滿足約束條件$\left\{\begin{array}{l}{x≥1}\\{x-y≤3}\\{y≤a(x-3)}\end{array}\right.$,若z=2x+y的最大值為8,則a=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知命題甲是“{x|$\frac{{x}^{2}+x}{x-1}$≥0}”,命題乙是“{x|log3(2x+1)≤0}”,則甲是乙的必要不充分條件.(從充分不必要、必要不充分、充要、既不充分也不必要中選填)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=lnx+$\frac{a}{x}({a>0})$.
(Ⅰ) 若函數(shù)f(x)有零點(diǎn),求實(shí)數(shù)a的取值范圍;
(Ⅱ) 證明:當(dāng)a≥$\frac{2}{e}$,b>1時(shí),f(lnb)>$\frac{1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.把邊長為1的正方形ABCD沿對(duì)角線BD折起,形成的三棱錐A-BCD的正視圖與俯視圖如圖所示,則其側(cè)視圖的面積為$\frac{1}{4}$,二面角B-AC-D的余弦值為$-\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)扇形的半徑長為2,圓心角為45°,則扇形的面積是$\frac{π}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案