4.把邊長為1的正方形ABCD沿對角線BD折起,形成的三棱錐A-BCD的正視圖與俯視圖如圖所示,則其側(cè)視圖的面積為$\frac{1}{4}$,二面角B-AC-D的余弦值為$-\frac{1}{3}$.

分析 由題意畫出圖形,得到幾何體側(cè)視圖的形狀,求出三角形邊長,代入三角形面積公式求得側(cè)視圖的面積;再找出二面角B-AC-D的平面角,求解三角形可得二面角B-AC-D的余弦值.

解答 解:由三視圖可得原幾何體如圖,

該三棱錐的側(cè)面ABD與底面CBD是全等的等腰直角三角形,且平面ABD⊥底面CBD,
過A作AO⊥BD,垂足為O,連接CO,則側(cè)視圖為等腰直角三角形AOC,
∵AO=OC=$\frac{\sqrt{2}}{2}$,∴${S}_{△AOC}=\frac{1}{2}×\frac{\sqrt{2}}{2}×\frac{\sqrt{2}}{2}=\frac{1}{4}$;
取AC的中點(diǎn)G,連接BG,DG,則∠BGD為二面角B-AC-D的平面角.
∵△ADC、△ABC是邊長為1的正三角形,∴$BG=DG=\frac{\sqrt{3}}{2}$,
在△BGD中,由余弦定理可得:cos∠BGD=$\frac{(\frac{\sqrt{3}}{2})^{2}+(\frac{\sqrt{3}}{2})^{2}-(\sqrt{2})^{2}}{2×\frac{\sqrt{3}}{2}×\frac{\sqrt{3}}{2}}$=-$\frac{1}{3}$.
故答案為:$\frac{1}{4},-\frac{1}{3}$.

點(diǎn)評(píng) 本題考查二面角的平面角的求法,考查空間想象能力和思維能力,訓(xùn)練了余弦定理在求解三角形中的應(yīng)用,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若x,y滿足約束條件$\left\{\begin{array}{l}{x≥1}\\{x-y≤3}\\{y≤-3(x-3)}\end{array}\right.$,則z=2x+y的最大值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.華為推出一款6寸大屏手機(jī),現(xiàn)對500名該手機(jī)使用者(200名女性,300名男性)進(jìn)行調(diào)查,對手機(jī)進(jìn)行打分,打分的頻數(shù)分布表如下:
女性用戶:
分值區(qū)間[50,60)[60,70)[70,80)[80,90)[90,100)
頻數(shù)2040805010
男性用戶:
分值區(qū)間[50,60)[60,70)[70,80)[80,90)[90,100)
頻數(shù)4575906030
(1)如果評(píng)分不低于70分,就表示該用戶對手機(jī)“認(rèn)可”,否則就表示“不認(rèn)可”,完成下列2×2列聯(lián)表,并回答是否有95%的把握認(rèn)為性別對手機(jī)的“認(rèn)可”有關(guān):
女性用戶男性用戶合計(jì)
“認(rèn)可”手機(jī)140180320
“不認(rèn)可”手機(jī)60120180
合計(jì)200300500
附:
P(K2≧k)0.050.01
k3.8416.635
K2=$\frac{n(a+d-b+c)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
(2)根據(jù)評(píng)分的不同,運(yùn)動(dòng)分層抽樣從男性用戶中抽取20名用戶,在這20名用戶中,從評(píng)分不低于80
分的用戶中任意抽取3名用戶,求3名用戶中評(píng)分小于90分的人數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知x,y的取值如表:
x0134
ya4.34.86.7
若x,y具有線性相關(guān)關(guān)系,且回歸方程為$\hat y=0.95x+2.6$,則a=2.2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖1,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,點(diǎn)E是BC邊的中點(diǎn),將△ABD沿BD折起,使平面ABD⊥平面BCD,連接AE,AC,DE,得到如圖2所示的幾何體.
(Ⅰ)求證:AB⊥平面ADC;
(Ⅱ) 若AD=1,AC與其在平面ABD內(nèi)的正投影所成角的正切值為$\sqrt{6}$,求點(diǎn)B到平面ADE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)O為坐標(biāo)原點(diǎn),已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,拋物線C2:x2=-ay的準(zhǔn)線方程為y=$\frac{1}{2}$.
(1)求橢圓C1和拋物線C2的方程;
(2)設(shè)過定點(diǎn)M(0,2)的直線t與橢圓C1交于不同的兩點(diǎn)P,Q,若O在以PQ為直徑的圓的外部,求直線t的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知O是坐標(biāo)原點(diǎn),點(diǎn)A(1,0),若點(diǎn)M(x,y)為平面區(qū)域$\left\{\begin{array}{l}{x+y≥2}\\{x≤1}\\{y≤2}\end{array}\right.$上的一個(gè)動(dòng)點(diǎn),則|$\overrightarrow{OA}$+$\overrightarrow{OM}$|的取值范圍是( 。
A.[$\sqrt{5}$,2$\sqrt{2}$]B.[$\frac{1}{2}$,1]C.[$\frac{3\sqrt{2}}{2}$,2$\sqrt{2}$]D.[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的上頂點(diǎn)為A,直線y=kx與橢圓交于B,C兩點(diǎn),且kAB•kAC=-$\frac{3}{4}$,則此橢圓的離心率e=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)$f(x)=\frac{{{e^{2x}}-{e^x}sinx+1}}{{{e^{2x}}+1}}$的最大值為M,最小值為m,則M+m的值為( 。
A.0B.1C.2D.4

查看答案和解析>>

同步練習(xí)冊答案