【題目】已知函數(shù)fx)=x2+ax+blnxa,bR),曲線(xiàn)yfx)在點(diǎn)(1,f1))處的切線(xiàn)方程為2xy20

1)判斷fx)在定義域內(nèi)的單調(diào)性,并說(shuō)明理由;

2)若對(duì)任意的x∈(1+∞),不等式fxmex11)恒成立,求實(shí)數(shù)m的取值范圍.

【答案】1fx)在(0+∞)上為增函數(shù);見(jiàn)解析(2[2,+∞

【解析】

求出原函數(shù)的導(dǎo)函數(shù),利用f(1)=2f(1)=0聯(lián)立不等式組求解a,b的值,則函數(shù)解析式可求.(1)f′(x)0(0,+∞)上恒成立,可得f(x)(0+∞)上為增函數(shù);

(2)對(duì)任意的x(1,+∞),不等式f(x)≤m(ex11)恒成立,即x2x+lnxm(ex11)恒成立,令g(x)m(ex11)x2+xlnx,求其導(dǎo)函數(shù),分析可知當(dāng)m≥2時(shí),g′(x)g′(1)≥0,g(x)單調(diào)遞增,則g(x)g(1)0;當(dāng)0m2時(shí),g′(x)0(1,+∞)上必有實(shí)數(shù)根,設(shè)最小的正數(shù)根為x0,當(dāng)x(1,x0)時(shí),g′(x)0,g(x)單調(diào)遞減,則g(x)g(1)0,與題設(shè)不符;當(dāng)m≤0時(shí),g′(x)0,則g(x)單調(diào)遞減,g(x)g(1)0,與題意不符.

解:由f(x)=x2+ax+blnx,得f(x)=2x+a(x0).

由曲線(xiàn)yf(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程為2xy20

,即a=﹣1,b1

f(x)=x2x+lnx

(1)∵f(x)=2x10在(0,+∞)上恒成立,

f(x)在(0,+∞)上為增函數(shù);

(2)由(1)得,f(x)x2x+lnx,

對(duì)任意的x(1,+∞),不等式f(x)≤m(ex11)恒成立,

x2x+lnxm(ex11)恒成立,

g(x)m(ex11)f(x)m(ex11)x2+xlnx

g′(x),注意到g(1)0g′(1)m2,

要使得對(duì)任意的x(1,+∞),不等式f(x)≤m(ex11)恒成立,即g(x)≥0,

則必有g′(x)(11+δ)(其中δ為任意小的正數(shù))大于0,亦有g′(1)≥0,則m≥2

當(dāng)m≥2時(shí),令u(x)g′(x),

u′(x)2ex120

u(x)(1+∞)上單調(diào)遞增,則g′(x)g′(1)≥0

g(x)單調(diào)遞增,則g(x)g(1)0

當(dāng)0m2時(shí),g′(1)m20,當(dāng)x→+∞時(shí),g′(x)→+∞,

g′(x)0(1,+∞)上必有實(shí)數(shù)根,設(shè)最小的正數(shù)根為x0

則當(dāng)x(1,x0)時(shí),g′(x)0,g(x)單調(diào)遞減,則g(x)g(1)0,與題設(shè)不符;

當(dāng)m≤0時(shí),g′(x)0,則g(x)單調(diào)遞減,g(x)g(1)0,與題意不符.

綜上所述,m的取值范圍為[2+∞)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)E的極坐標(biāo)方程為,直線(xiàn)l的參數(shù)方程為(t為參數(shù)).點(diǎn)P為曲線(xiàn)E上的動(dòng)點(diǎn),點(diǎn)Q為線(xiàn)段OP的中點(diǎn).

1)求點(diǎn)Q的軌跡(曲線(xiàn)C)的直角坐標(biāo)方程;

2)若直線(xiàn)l交曲線(xiàn)CAB兩點(diǎn),點(diǎn)恰好為線(xiàn)段AB的三等分點(diǎn),求直線(xiàn)l的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中e是自然對(duì)數(shù)的底數(shù).

1)若,證明:;

2)若時(shí),都有,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正四棱錐中,是邊長(zhǎng)為3的等邊三角形,點(diǎn)M的重心,過(guò)點(diǎn)M作與平面PAC垂直的平面,平面與截面PAC交線(xiàn)段的長(zhǎng)度為2,則平面與正四棱椎表面交線(xiàn)所圍成的封閉圖形的面積可能為______________.(請(qǐng)將可能的結(jié)果序號(hào)填到橫線(xiàn)上)①2;②;③3; ④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖所示的三棱錐D﹣ABC的四個(gè)頂點(diǎn)均在球O的球面上,ABCDBC所在平面相互垂直,AB=3,AC=,BC=CD=BD=2,則球O的表面積為(

A.4π B.12π C.16π D.36π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)fx)=2sinxsinxcosx)﹣1圖象向右平移個(gè)單位得函數(shù)gx)的圖象,則下列命題中正確的是(  )

A.fx)在(,)上單調(diào)遞增

B.函數(shù)fx)的圖象關(guān)于直線(xiàn)x對(duì)稱(chēng)

C.gx)=2cos2x

D.函數(shù)gx)的圖象關(guān)于點(diǎn)(,0)對(duì)稱(chēng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題共14分)已知?jiǎng)狱c(diǎn)在角的終邊上.

(1)若,求實(shí)數(shù)的值;

(2)記,試用S表示出來(lái).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】很多關(guān)于整數(shù)規(guī)律的猜想都通俗易懂,吸引了大量的數(shù)學(xué)家和數(shù)學(xué)愛(ài)好者,有些猜想已經(jīng)被數(shù)學(xué)家證明,如“費(fèi)馬大定理”,但大多猜想還未被證明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的內(nèi)容是:對(duì)于每一個(gè)正整數(shù),如果它是奇數(shù),則將它乘以再加1;如果它是偶數(shù),則將它除以;如此循環(huán),最終都能夠得到.下圖為研究“角谷猜想”的一個(gè)程序框圖.若輸入的值為,則輸出i的值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)興趣小組為了測(cè)量校園外一座不可到達(dá)建筑物的高度,采用兩次測(cè)角法,并自制了測(cè)量工具:將一個(gè)量角器放在復(fù)印機(jī)上放大4倍復(fù)印,在中心處綁上一個(gè)鉛錘,用于測(cè)量樓頂仰角(如圖);推動(dòng)自行車(chē)來(lái)測(cè)距(輪子滾動(dòng)一周為1.753米).該小組在操場(chǎng)上選定A點(diǎn),此時(shí)測(cè)量視線(xiàn)和鉛錘線(xiàn)之間的夾角在量角器上度數(shù)為37°;推動(dòng)自行車(chē)直線(xiàn)后退,輪子滾動(dòng)了10卷達(dá)到B點(diǎn),此時(shí)測(cè)量視線(xiàn)和鉛錘線(xiàn)之間的夾角在量角器上度數(shù)為53°.測(cè)量者站立時(shí)的眼高1.55m,根據(jù)以上數(shù)據(jù)可計(jì)算得該建筑物的高度約為___________.(精確到0.1

參考數(shù)據(jù):,

查看答案和解析>>

同步練習(xí)冊(cè)答案