【題目】已知正四棱錐中,是邊長(zhǎng)為3的等邊三角形,點(diǎn)M是的重心,過(guò)點(diǎn)M作與平面PAC垂直的平面,平面與截面PAC交線(xiàn)段的長(zhǎng)度為2,則平面與正四棱椎表面交線(xiàn)所圍成的封閉圖形的面積可能為______________.(請(qǐng)將可能的結(jié)果序號(hào)填到橫線(xiàn)上)①2;②;③3; ④.
【答案】①③
【解析】
設(shè),因?yàn)?/span>為正四棱錐,易知平面,過(guò)M作∥分別交棱、于點(diǎn)T、L,則平面,由題意,只需所作的平面是包含且與截面PAC交線(xiàn)段的長(zhǎng)度為2即可,數(shù)形結(jié)合,作出截面即可得到答案.
設(shè),因?yàn)?/span>為正四棱錐,易知平面平面,又
,平面平面,平面,所以平面,
過(guò)M作∥分別交棱、于點(diǎn)T、L,則平面,由題意,
只需所作的平面是包含且與截面PAC交線(xiàn)段的長(zhǎng)度為2即可,
又是邊長(zhǎng)為3的等邊三角形,點(diǎn)M是的重心,過(guò)M作∥分別交棱
、于點(diǎn)E、Q,所以,即,所以,
如圖1,則平面為滿(mǎn)足題意的平面,因?yàn)?/span>,所以,所以
,所以,故①正確;
如圖2,過(guò)T作∥,過(guò)L作∥,易知平面為滿(mǎn)足題意的平面,
且為兩個(gè)全等的直角梯形,易知T、H分別為GE、EF的中點(diǎn),所以,
所以五邊形的面積,
故③正確.當(dāng)∥與∥是完全相同的,所以,綜上選①③.
故答案為:①③
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】A、B兩同學(xué)參加數(shù)學(xué)競(jìng)賽培訓(xùn),在培訓(xùn)期間,他們參加了8次測(cè)驗(yàn),成績(jī)(單位:分)記錄如下:
A 71 62 72 76 63 70 85 83
B 73 84 75 73 78 76 85
B同學(xué)的成績(jī)不慎被墨跡污染(,分別用m,n表示).
(1)用莖葉圖表示這兩組數(shù)據(jù),現(xiàn)從A、B兩同學(xué)中選派一人去參加數(shù)學(xué)競(jìng)賽,你認(rèn)為選派誰(shuí)更好?請(qǐng)說(shuō)明理由(不用計(jì)算);
(2)若B同學(xué)的平均分為78,方差,求m,n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在黨中央的英明領(lǐng)導(dǎo)下,在全國(guó)人民的堅(jiān)定支持下,中國(guó)的抗擊“新型冠狀肺炎”戰(zhàn)役取得了階段性勝利,現(xiàn)在擺在我們大家面前的是有序且安全的復(fù)工復(fù)產(chǎn).某商場(chǎng)為了提振顧客的消費(fèi)信心,對(duì)某中型商品實(shí)行分期付款方式銷(xiāo)售,根據(jù)以往資料統(tǒng)計(jì),顧客購(gòu)買(mǎi)該商品選擇分期付款的期數(shù)ξ的分布列為
其中0<a<1,0<b<1.
(1)求購(gòu)買(mǎi)該商品的3位顧客中,恰有1位選擇分4期付款的概率;
(2)商場(chǎng)銷(xiāo)售一件該商品,若顧客選擇分4期付款,則商場(chǎng)獲得的利潤(rùn)為2000元;若顧客選擇分5期付款,則商場(chǎng)獲得的利潤(rùn)為2500元;若顧客選擇分6期付款,則商場(chǎng)獲得的利潤(rùn)為3000元,假設(shè)該商場(chǎng)銷(xiāo)售兩件該商品所獲得的利潤(rùn)為X(單位:元),
(i)設(shè)X=5500時(shí)的概率為m,求當(dāng)m取最大值時(shí),利潤(rùn)X的分布列和數(shù)學(xué)期望;
(ii)設(shè)某數(shù)列{xn}滿(mǎn)足x1=0.4,xn=a,2xn+1=b,若a<0.25,求n的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:+=1(a>b>0)的兩焦點(diǎn)之間的距離為2,兩條準(zhǔn)線(xiàn)間的距離為8,直線(xiàn)l:y=k(x-m)(m∈R)與橢圓交于P,Q兩點(diǎn).
(1) 求橢圓C的方程;
(2) 設(shè)橢圓的左頂點(diǎn)為A,記直線(xiàn)AP,AQ的斜率分別為k1,k2.①若m=0,求k1k2的值;②若k1k2=-,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩位戰(zhàn)士參加射擊比賽訓(xùn)練.從若干次預(yù)賽成績(jī)中隨機(jī)抽取8次,記錄如下:
甲82 81 79 78 95 88 93 84
乙92 95 80 75 83 80 90 85
(1)用莖葉圖表示這兩組數(shù)據(jù),并分別求兩組數(shù)據(jù)的中位數(shù);
(2)現(xiàn)要從中選派一人參加射擊比賽,從統(tǒng)計(jì)學(xué)的角度考慮,你認(rèn)為選派哪位戰(zhàn)士參加合適?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班級(jí)共有50名同學(xué)(男女各占一半),為弘揚(yáng)傳統(tǒng)文化,班委組織了“古詩(shī)詞男女對(duì)抗賽”,將同學(xué)隨機(jī)分成25組,每組男女同學(xué)各一名,每名同學(xué)均回答同樣的五個(gè)不同問(wèn)題,答對(duì)一題得一分,答錯(cuò)或不答得零分,總分5分為滿(mǎn)分.最后25組同學(xué)得分如下表:
組別號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
男同學(xué)得分 | 5 | 4 | 5 | 5 | 4 | 5 | 5 | 4 | 4 | 4 | 5 | 5 | 4 |
女同學(xué)得分 | 4 | 3 | 4 | 5 | 5 | 5 | 4 | 5 | 5 | 5 | 5 | 3 | 5 |
分差 | 1 | 1 | 1 | 0 | -1 | 0 | 1 | -1 | -1 | -1 | 0 | 2 | -1 |
組別號(hào) | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | |
男同學(xué)得分 | 4 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 4 | 3 | 3 | |
女同學(xué)得分 | 5 | 3 | 4 | 5 | 4 | 3 | 5 | 5 | 3 | 4 | 5 | 5 | |
分差 | -1 | 0 | 0 | -1 | 0 | 1 | 0 | 0 | 2 | 0 | -2 | -2 |
(I)完成列聯(lián)表,并判斷是否有90%的把握認(rèn)為“該次對(duì)抗賽是否得滿(mǎn)分”與“同學(xué)性別”有關(guān);
(Ⅱ)某課題研究小組假設(shè)各組男女同學(xué)分差服從正態(tài)分布,首先根據(jù)前20組男女同學(xué)的分差確定和,然后根據(jù)后面5組同學(xué)的分差來(lái)檢驗(yàn)?zāi)P停瑱z驗(yàn)方法是:記后面5組男女同學(xué)分差與的差的絕對(duì)值分別為,若出現(xiàn)下列兩種情況之一,則不接受該模型,否則接受該模型.①存在;②記滿(mǎn)足的i的個(gè)數(shù)為k,在服從正態(tài)分布的總體(個(gè)體數(shù)無(wú)窮大)中任意取5個(gè)個(gè)體,其中落在區(qū)間內(nèi)的個(gè)體數(shù)大于或等于k的概率為P,.
試問(wèn)該課題研究小組是否會(huì)接受該模型.
0.10 | 0.05 | 0.010 | |
2.706 | 3.841 | 6.635 |
參考公式和數(shù)據(jù):
,;若,有,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+ax+blnx(a,b∈R),曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程為2x﹣y﹣2=0.
(1)判斷f(x)在定義域內(nèi)的單調(diào)性,并說(shuō)明理由;
(2)若對(duì)任意的x∈(1,+∞),不等式f(x)≤m(ex﹣1﹣1)恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列的前n項(xiàng)和為,
(1)求證:數(shù)列是等比數(shù)列;
(2)若,是否存在q的某些取值,使數(shù)列中某一項(xiàng)能表示為另外三項(xiàng)之和?若能求出q的全部取值集合,若不能說(shuō)明理由.
(3)若,是否存在,使數(shù)列中,某一項(xiàng)可以表示為另外三項(xiàng)之和?若存在指出q的一個(gè)取值,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中,,,.
(1)求證:平面平面;
(2)若,直線(xiàn)與平面所成角為45°,為的中點(diǎn),求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com