4.已知函數(shù)f=$\left\{\begin{array}{l}{{2}^{x+2},x<0}\\{{x}^{3},x≥0}\end{array}\right.$,則f[f(-1)]=8.

分析 利用分段函數(shù)的性質(zhì)求解.

解答 解:∵函數(shù)f=$\left\{\begin{array}{l}{{2}^{x+2},x<0}\\{{x}^{3},x≥0}\end{array}\right.$,
∴f(-1)=2-1+2=2,
f[f(-1)]=f(2)=23=8.
故答案為:8.

點(diǎn)評 本題考查函數(shù)值的求法,是中檔題,解題時要認(rèn)真審題,注意分段函數(shù)的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知sin($\frac{π}{4}$-x)=$\frac{5}{13}$,0<x<$\frac{π}{4}$,則cos2x=$\frac{120}{169}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令bn=3${\;}^{{a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若數(shù)列{an}滿足a1=1,且對于任意的n∈N*都有an+1=an+n+1,則$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{2006}}}}$等于( 。
A.$\frac{4030}{2016}$B.$\frac{2015}{2016}$C.$\frac{4032}{2017}$D.$\frac{2016}{2017}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知全集U=R,集合A={x|-2<x<1},B={x|x>2或x<0},則A∩(∁RB)=( 。
A.{x|0≤x<2}B.{x|x>2或x<0}C.{x|0<x<1}D.{x|0≤x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.冪函數(shù)y=f(x)經(jīng)過點(diǎn)(3,$\sqrt{3}$),則f(x)是( 。
A.偶函數(shù),且在(0,+∞)上是增函數(shù)
B.偶函數(shù),且在(0,+∞)上是減函數(shù)
C.奇函數(shù),且在(0,+∞)是減函數(shù)
D.非奇非偶函數(shù),且在(0,+∞)上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.不等式組$\left\{\begin{array}{l}{x+y≥1}\\{x-2y≤4}\end{array}\right.$的解集為D,下列命題中正確的是( 。
A.?(x,y)∈D,x+2y≤-1B.?(x,y)∈D,x+2y≥-2C.?(x,y)∈D,x+2y≤3D.?(x,y)∈D,x+2y≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)數(shù)列{an}滿足a1=0,且2an+1=1+anan+1,bn=$\frac{1}{\sqrt{n}}$-$\sqrt{\frac{{a}_{n+1}}{n}}$,記Sn=b1+b2+…+bn,則S100=$1-\frac{1}{\sqrt{101}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=2sin(ωx+φ)(ω>0.|φ|<$\frac{π}{2}$)的圖象如圖所示,則函數(shù)y=f(x)+ω的對稱中心坐標(biāo)為( 。
A.($\frac{2}{3}$kπ+$\frac{π}{24}$,$\frac{3}{2}$)(k∈Z)B.(3kπ-$\frac{3π}{8}$,$\frac{2}{3}$)(k∈Z)C.($\frac{1}{2}$kπ+$\frac{5π}{8}$,$\frac{3}{2}$)(k∈Z)D.($\frac{3}{2}kπ$-$\frac{3π}{8}$,$\frac{2}{3}$)(k∈Z)

查看答案和解析>>

同步練習(xí)冊答案