15.函數(shù)f(x)=x-lnx的單調(diào)遞減區(qū)間是( 。
A.(0,1)B.(0,+∞)C.(1,+∞)D.(-∞,0)∪(1,+∞)

分析 求出函數(shù)的導(dǎo)數(shù)為y′,再解y'<0得x的范圍.結(jié)合函數(shù)的定義域,即可得到單調(diào)遞減區(qū)間.

解答 解:函數(shù)y=x-lnx的導(dǎo)數(shù)為y=1-$\frac{1}{x}$,
令y′=1-$\frac{1}{x}$<0,得x<1
∴結(jié)合函數(shù)的定義域,得當(dāng)x∈(0,1)時(shí),函數(shù)為單調(diào)減函數(shù).
因此,函數(shù)y=x-lnx的單調(diào)遞減區(qū)間是(0,1)
故選:A.

點(diǎn)評(píng) 本題給出含有對(duì)數(shù)的基本函數(shù),求函數(shù)的減區(qū)間,著重考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的定義域等知識(shí),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知向量$\overrightarrow{a}$=(k,3),$\overrightarrow$=(1,4),$\overrightarrow{c}$=(2,1)且(3$\overrightarrow{a}$-2$\overrightarrow$)⊥$\overrightarrow{c}$,則實(shí)數(shù)k=( 。
A.-$\frac{9}{2}$B.0C.3D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.定義在R上的可導(dǎo)函數(shù)f(x),其導(dǎo)數(shù)為f′(x),則“f′(x)為偶函數(shù)”是“f(x)為奇函數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.一輛汽車在某段路程中的行駛速率v與時(shí)間t的關(guān)系如圖所示.假設(shè)這輛汽車的里程表在汽車行駛這段路程前的讀數(shù)為2000km,試建立行駛這段路程時(shí)汽車?yán)锍瘫碜x數(shù)s 與時(shí)間t 的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,已知四棱錐P-ABCD的底面是菱形,對(duì)角線AC,BD交于點(diǎn)O,OA=4,OB=3,OP=4,OP⊥底面ABCD,設(shè)點(diǎn)M滿足$\overrightarrow{PM}$=λ$\overrightarrow{MC}$(λ>0).
(1)求當(dāng)λ為何值時(shí),使得PA∥平面BDM;
(2)當(dāng)λ=$\frac{1}{2}$時(shí),求直線PA與平面BDM所成角的正弦值;
(3)若二面角M-AB-C的大小為$\frac{π}{4}$,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)f(x)=x2-2lnx的單調(diào)減區(qū)間是( 。
A.(0,1)B.(1,+∞)C.(-∞,-1)∪(0,1)D.(-1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.平面直角坐標(biāo)系中,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{3}t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐
標(biāo)系,已知曲線C的極坐標(biāo)方程為4ρ2cos2θ-4ρsinθ-3=0.
(I)求直線l的極坐標(biāo)方程;
(II)若直線l與曲線C相交于A、B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.sin18°•sin78°-cos162°•cos78°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)a=ln2,b=log23,c=log3$\frac{1}{2}$,則a,b,c的大小關(guān)系是( 。
A.a>c>bB.b>c>aC.b>a>cD.c>b>a

查看答案和解析>>

同步練習(xí)冊(cè)答案