7.平面直角坐標(biāo)系中,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{3}t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐
標(biāo)系,已知曲線C的極坐標(biāo)方程為4ρ2cos2θ-4ρsinθ-3=0.
(I)求直線l的極坐標(biāo)方程;
(II)若直線l與曲線C相交于A、B兩點(diǎn),求|AB|.

分析 (I)在平面直角坐標(biāo)系中,直線l經(jīng)過(guò)坐標(biāo)原點(diǎn),傾斜角是$\frac{π}{3}$,可得直線l的極坐標(biāo)方程;
(II)若直線l與曲線C相交于A、B兩點(diǎn),利用極徑的意義求|AB|.

解答 解:(I)∵在平面直角坐標(biāo)系中,直線l經(jīng)過(guò)坐標(biāo)原點(diǎn),傾斜角是$\frac{π}{3}$,
∴直線l的極坐標(biāo)方程是θ=$\frac{π}{3}$,ρ∈R;     
(II)把θ=$\frac{π}{3}$代入C的極坐標(biāo)方程,得$2{ρ}^{2}+2\sqrt{3}ρ-3=0$
∴ρ12=-$\sqrt{3}$,ρ1ρ2=-$\frac{3}{2}$,
∴|AB|=|ρ12|=$\sqrt{3+6}$=3.

點(diǎn)評(píng) 本題考查參數(shù)方程、極坐標(biāo)方程,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列函數(shù)中,既是奇函數(shù),又在[0,1]上是增函數(shù)的是( 。
A.y=|x|B.y=x2+1C.y=x3D.y=sinx(x∈[0,$\frac{π}{2}$])

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)f(x)是R上的奇函數(shù),且當(dāng)x∈(0,+∞)時(shí),f(x)=x(1+x3)-1,求f(x)在R上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)f(x)=x-lnx的單調(diào)遞減區(qū)間是( 。
A.(0,1)B.(0,+∞)C.(1,+∞)D.(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知直線x+a2y+6=0與直線(a-2)x+3ay+2a=0平行,則a的值為0或-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.直線y=x-1與圓$x_{\;}^2+y_{\;}^2-2x+\frac{3}{4}=0$及拋物線$y_{\;}^2=4x$依次交于A,B,C,D四點(diǎn),則|AB|+|CD|=( 。
A.6B.8C.7D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=x2+alnx-(a+2)x(a∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)f(x)有極大值與極小值時(shí),求證函數(shù)f(x)在定義域內(nèi)有唯一的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知下列四個(gè)命題:p1:若函數(shù)$f(x)=\left\{\begin{array}{l}a{x^2}+1,x≥0\\(a+2){e^{ax}},x<0\end{array}\right.$為R上的單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是(0,+∞);p2:若f(x)=2x-2-x,則?x∈R,f(-x)=-f(x);p3:若$f(x)=x+\frac{1}{x+1}$,則?x0∈(0,+∞),f(x0)=1;p4:若函數(shù)f(x)=xlnx-ax2有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是$0<a<\frac{1}{2}$,其中真命題的個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.將函數(shù)$f(x)=2sin({2x+\frac{π}{6}})$的圖象向左平移$\frac{π}{12}$個(gè)單位,再向上平移1個(gè)單位,得到g(x)的圖象.若g(x1)g(x2)=9,且x1,x2∈[-2π,2π],則2x1-x2的最大值為( 。
A.$\frac{49π}{12}$B.$\frac{35π}{6}$C.$\frac{25π}{6}$D.$\frac{17π}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案