精英家教網 > 高中數學 > 題目詳情

已知f(x)=ax,g(x)=-logbx,且lga+lgb=0,a≠1,b≠1,則y=f(x)與y=g(x)的圖象


  1. A.
    關于直線x+y=0對稱
  2. B.
    關于直線x-y=0對稱
  3. C.
    關于y軸對稱
  4. D.
    關于原點對稱
B
分析:∵lga+lgb=0?ab=1,∴a,b互為倒數,∴g(x)=-logbx=-loga-1x=logax.解題的關鍵是找到a,b互為倒數這種關系并合理運用.
解答:lga+lgb=0?ab=1.
∴g(x)=-logbx=-loga-1x=logax.
∴f(x)與g(x)的圖象關于y=x對稱.
故選B
點評:指數函數的圖象與對數函數的圖象關于y=x對稱.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(x)=ax+a-x(a>0且a≠1),
(1)證明函數f ( x )的圖象關于y軸對稱;
(2)判斷f(x)在(0,+∞)上的單調性,并用定義加以證明;
(3)當x∈[1,2]時函數f (x )的最大值為
103
,求此時a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=ax+b(a>0且a≠1,b為常數)的圖象經過點(1,1)且0<f(0)<1,記m=
1
2
[f-1(x1)+f-1(x2)]
,n=f-1(
x1+x2
2
)
(x1、x2是兩個不相等的正實數),試比較m、n的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)已知f(x)=ax+a-x,若f(1)=3,,求f(2)的值.
(2)設函數f(x)=log3(ax-bx),且f(1)=1,f(2)=log312.求a,b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=ax(a>1),g(x)=bx(b>1),當f(x1)=g(x2)=2時,有x1>x2,則a,b的大小關系是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•新疆模擬)已知f(x)=ax-lnx,x∈(0,e],g(x)=
lnx
x
,其中e是自然對數的底,a∈R.
(Ⅰ)a=1時,求f(x)的單調區(qū)間、極值;
(Ⅱ)是否存在實數a,使f(x)的最小值是3,若存在,求出a的值,若不存在,說明理由;
(Ⅲ)在(1)的條件下,求證:f(x)>g(x)+
1
2

查看答案和解析>>

同步練習冊答案