【題目】設盒子中裝有6個紅球,4個白球,2個黑球,且規(guī)定:取出一個紅球得分,取出一個白球得分,取出一個黑球得分,其中,,都為正整數(shù).

1)當,,時,從該盒子中依次任取(有放回,且每球取到的機會均等)2個球,記隨機變量為取出此2球所得分數(shù)之和,求的分布列;

2)當時,從該盒子中任。壳蛉〉降臋C會均等)1個球,記隨機變量為取出此球所得分數(shù),若,,求

【答案】1分布列見解析;2,

【解析】

1)有題知的可能取值為2,34,5,6,分別計算概率,再寫出分布列即可.

(2)先寫出的分布列,再由列出方程組,即可解出.

1)記隨機變量為取出此2球所得分數(shù)之和,

的可能取值為2,34,5,6,

,,

.

所以的分布列為:

2

3

4

5

6

2)由題意知的分布列為:

1

因為,,

所以

解得,.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點,點為動點,以為直徑的圓內(nèi)切于.

1)證明為定值,并求點的軌跡的方程;

2)過點的直線交于兩點,直線過點且與垂直,交于兩點,的中點,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】銷售甲、乙兩種商品所得利潤分別是萬元,它們與投入資金 萬元的關系分別為,,(其中都為常數(shù)),函數(shù)對應的曲線、如圖所示.

1)求函數(shù)的解析式;

2)若該商場一共投資4萬元經(jīng)銷甲、乙兩種商品,求該商場所獲利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若函數(shù)有三個不同的零點,則實數(shù)的取值范圍是

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從高三抽出名學生參加數(shù)學競賽,由成績得到如下的頻率分布直方圖.試利用頻率分布直方圖求:

1)這名學生成績的眾數(shù)與中位數(shù);

2)這名學生的平均成績.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市食品藥品監(jiān)督管理局開展2020年春季快遞餐飲安全檢查,對本市的8個快遞配餐點進行了原料采購加工標準和衛(wèi)生標準的檢查和評分,其評分情況如表所示:

快遞配餐點編號

1

2

3

4

5

6

7

8

原料采購加工標準評分

82

75

70

66

83

93

95

100

衛(wèi)生標準評分

81

79

77

75

82

83

84

87

1)已知之間具有線性相關關系,求關于的線性回歸方程;(精確到0.1

2)現(xiàn)從8個被檢查點中任意抽取兩個組成一組,若兩個點的原料采購加工標準和衛(wèi)生標準的評分均超過80分,則組成“快遞標兵配餐點”,求該組被評為“快遞標兵配餐點”的概率.

參考公式:,;參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求在點處的切線方程;

2)若不等式恒成立,求k的取值范圍;

3)求證:當時,不等式成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-5:不等式選講]

已知函數(shù)

(Ⅰ)求不等式的解集;

(Ⅱ)若,,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,,底面為直角梯形,,,為線段上一點.

I)若,求證:平面;

II)若,,異面直線角,二面角的余弦值為,求的長及直線與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案