【題目】在直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸非負半軸為極軸)中,圓C的方程為ρ=6sinθ.
(1)求圓C的直角坐標方程;
(2)若點P(1,2),設(shè)圓C與直線l交于點A,B,求|PA|+|PB|的最小值.

【答案】
(1)解:由ρ=6sinθ得ρ2=6ρsinθ,化為直角坐標方程為x2+y2=6y,即x2+(y﹣3)2=9
(2)解:將l的參數(shù)方程代入圓C的直角坐標方程,得t2+2(cosα﹣sinα)t﹣7=0,

由△=(2cosα﹣2sinα)2+4×7>0,故可設(shè)t1,t2是上述方程的兩根,

,

又直線過點(1,2),故結(jié)合t的幾何意義得 = ,

∴|PA|+|PB|的最小值為


【解析】(1)由ρ=6sinθ得ρ2=6ρsinθ,利用互化公式可得直角坐標方程.(2)將l的參數(shù)方程代入圓C的直角坐標方程,得t2+2(cosα﹣sinα)t﹣7=0,利用根與系數(shù)的關(guān)系、弦長公式即可得出.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10)

某單位建造一間地面面積為12m2的背面靠墻的矩形小房,由于地理位置的限制,房子側(cè)面的長度x不得超過米,房屋正面的造價為400/m2,房屋側(cè)面的造價為150/m2,屋頂和地面的造價費用合計為5800元,如果墻高為3m,且不計房屋背面的費用.

1)把房屋總造價表示成的函數(shù),并寫出該函數(shù)的定義域.

2)當側(cè)面的長度為多少時,總造價最底?最低總造價是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“楊輝三角”又稱“賈憲三角”,是因為賈憲約在公元1050年首先使用“賈憲三角”進行高次開方運算,而楊輝在公元1261年所著的《詳解九章算法》一書中,輯錄了賈憲三角形數(shù)表,并稱之為“開方作法本源”圖.下列數(shù)表的構(gòu)造思路就源于“楊輝三角”.該表由若干行數(shù)字組成,從第二行起,每一行中的數(shù)字均等于其“肩上”兩數(shù)之和,表中最后一行僅有一個數(shù),則這個數(shù)是(
A.2017×22016
B.2018×22015
C.2017×22015
D.2018×22016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=(x﹣a)lnx+b.
(1)當a=0時,討論函數(shù)f(x)在[ ,+∞)上的零點個數(shù);
(2)當a>1且函數(shù)f(x)在(1,e)上有極小值時,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在下列命題中:①兩個函數(shù)的對應(yīng)法則和值域相同,則這兩個是同一個函數(shù);②上單調(diào)遞增,③若函數(shù)的定義域為,則函數(shù)的定義域為;④若函數(shù)在其定義域內(nèi)不是單調(diào)函數(shù),則不存在反函數(shù);⑤函數(shù)的最小值為4;⑥若關(guān)于的不等式區(qū)間內(nèi)恒成立,則實數(shù)m的范圍是其中真命題的序號有_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn . 已知a1=2,Sn+1=4an+2.
(1)設(shè)bn=an+1﹣2an , 證明數(shù)列{bn}是等比數(shù)列;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知有限集,如果中元素滿足,就稱為“完美集”.

①集合不是“完美集”;

②若、是兩個不同的正數(shù),且是“完美集”,則、至少有一個大于2

③二元“完美集”有無窮多個;

④若,則“完美集”有且只有一個,且

其中正確的結(jié)論是________(填上你認為正確的所有結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(3x+3φ)﹣2sin(x+φ)cos(2x+2φ),其中|φ|<π,若f(x)在區(qū)間 上單調(diào)遞減,則φ的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓C: (a>b>0)的左、右焦點分別為F1、F2 , 上頂點為A,過A與AF2垂直的直線交x軸負半軸于Q點,且F1恰好是線段QF2的中點.
(1)若過A、Q、F2三點的圓恰好與直線3x﹣4y﹣7=0相切,求橢圓C的方程;
(2)在(1)的條件下,B是橢圓C的左頂點,過點R( ,0)作與x軸不重合的直線l交橢圓C于E、F兩點,直線BE、BF分別交直線x= 于M、N兩點,若直線MR、NR的斜率分別為k1 , k2 , 試問:k1k2是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案