【題目】“楊輝三角”又稱(chēng)“賈憲三角”,是因?yàn)橘Z憲約在公元1050年首先使用“賈憲三角”進(jìn)行高次開(kāi)方運(yùn)算,而楊輝在公元1261年所著的《詳解九章算法》一書(shū)中,輯錄了賈憲三角形數(shù)表,并稱(chēng)之為“開(kāi)方作法本源”圖.下列數(shù)表的構(gòu)造思路就源于“楊輝三角”.該表由若干行數(shù)字組成,從第二行起,每一行中的數(shù)字均等于其“肩上”兩數(shù)之和,表中最后一行僅有一個(gè)數(shù),則這個(gè)數(shù)是(
A.2017×22016
B.2018×22015
C.2017×22015
D.2018×22016

【答案】B
【解析】解:由題意,數(shù)表的每一行都是等差數(shù)列,從右到左, 且第一行公差為1,第二行公差為2,第三行公差為4,…,第2015行公差為22014 ,
故第1行的第一個(gè)數(shù)為:2×21 ,
第2行的第一個(gè)數(shù)為:3×20 ,
第3行的第一個(gè)數(shù)為:4×21 ,

第n行的第一個(gè)數(shù)為:(n+1)×2n2 ,
第2017行只有M,
則M=(1+2017)22015=2018×22015
故選:B.
數(shù)表的每一行都是等差數(shù)列,從右到左,第一行公差為1,第二行公差為2,第三行公差為4,…,第2015行公差為22014 , 第2016行只有M,由此可得結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,a,b,c成等比數(shù)列,且a2﹣c2=ac﹣bc.
(Ⅰ)求∠A的大小;
(Ⅱ)若a= ,且sinA+sin(B﹣C)=2sin2C,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若定義在上的函數(shù)滿(mǎn)足條件:存在實(shí)數(shù),使得:

任取,有是常數(shù));

對(duì)于內(nèi)任意,當(dāng),總有.

我們將滿(mǎn)足上述兩條件的函數(shù)稱(chēng)為平頂型函數(shù),稱(chēng)平頂高度,稱(chēng)平頂寬度”.根據(jù)上述定義,解決下列問(wèn)題:

1)函數(shù)是否為平頂型函數(shù)?若是,求出平頂高度平頂寬度;若不是,簡(jiǎn)要說(shuō)明理由.

2 已知平頂型函數(shù),求出的值.

3)對(duì)于(2)中的函數(shù),若上有兩個(gè)不相等的根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《周髀算經(jīng)》中給出了弦圖,所謂弦圖是由四個(gè)全等的直角三角形和中間一個(gè)小正方形拼成一個(gè)大的正方形,若圖中直角三角形兩銳角分別為α、β,且小正方形與大正方形面積之比為4:9,則cos(α﹣β)的值為(
A.
B.
C.
D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知三棱柱ABC﹣A1B1C1的底面ABC是等邊三角形,且AA1⊥底面ABC,M為AA1的中點(diǎn),N在線(xiàn)段AB上,且AN=2NB,點(diǎn)P在CC1上.
(1)證明:平面BMC1⊥平面BCC1B1;
(2)當(dāng) 為何值時(shí),有PN∥平面BMC1?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將邊長(zhǎng)為2的正方形ABCD沿對(duì)角線(xiàn)BD折疊,使得平面ABD丄平面CBD,若AM丄平面ABD,且AM=
(1)求證:DM⊥平面ABC;
(2)求二面角C﹣BM﹣D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知F1 , F2是橢圓C1與雙曲線(xiàn)C2的公共焦點(diǎn),點(diǎn)P是C1與C2的公共點(diǎn),若橢圓C1的離心率e1= ,∠F1PF2= ,則雙曲線(xiàn)C2的離心率e2的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線(xiàn)l的參數(shù)方程為 (t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸)中,圓C的方程為ρ=6sinθ.
(1)求圓C的直角坐標(biāo)方程;
(2)若點(diǎn)P(1,2),設(shè)圓C與直線(xiàn)l交于點(diǎn)A,B,求|PA|+|PB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:在計(jì)算時(shí),我們發(fā)現(xiàn),從第一個(gè)數(shù)開(kāi)始,后面每個(gè)數(shù)與它的前面?zhèn)數(shù)的差都是一個(gè)相等的常數(shù),具有這種規(guī)律的一列數(shù),除了直接相加外,我們還可以用下面的公式來(lái)計(jì)算它們的和,(其中:表示數(shù)的個(gè)數(shù),表示第一個(gè)數(shù),表示最后一個(gè)數(shù))),那么,利用或不利用上面的知識(shí)解答下面的問(wèn)題:某集團(tuán)總公司決定將下屬的一個(gè)分公司對(duì)外招商承包,有符合條件的兩家企業(yè)A、B分別擬定上繳利潤(rùn),方案如下:A:每年結(jié)算一次上繳利潤(rùn),第一年上繳利潤(rùn)100萬(wàn)元,以后每年比前一年增加100萬(wàn)元;B:每半年結(jié)算一次上繳利潤(rùn),第一個(gè)半年上繳利潤(rùn)30萬(wàn)元,以后每半年比前半年增加30萬(wàn)元;

1)如果承包4年,你認(rèn)為應(yīng)該承包給哪家企業(yè),總公司獲利多?

2)如果承包年,請(qǐng)用含的代數(shù)式分別表示兩家企業(yè)上繳利潤(rùn)的總金額,請(qǐng)問(wèn)總公司應(yīng)該如何在承包企業(yè)A、B中選擇?

查看答案和解析>>

同步練習(xí)冊(cè)答案