已知拋物線C頂點為原點,其焦點F(0,c)(c>0)到直線l:x-y-2=0的距離為,設P為直線l上的點,過點P作拋物線C的兩條切線PA,PB,其中A,B為切點.
(1)求拋物線C的方程;
(2)當點P(x0,y0)為直線l上的定點時,求直線AB的方程;
(3)當點P在直線l上移動時,求|AF|·|BF|的最小值.
(1) x2=4y   (2) y=x0x-y0   (3)

解:(1)∵拋物線C的焦點F(0,c)(c>0)到直線l:x-y-2=0的距離為,
=,得c=1,
∴F(0,1),即拋物線C的方程為x2=4y.
(2)設切點A(x1,y1),B(x2,y2),
由x2=4y得y′=x,
∴切線PA:y-y1=x1(x-x1),
有y=x1x-+y1,而=4y1,
即切線PA:y=x1x-y1,
同理可得切線PB:y=x2x-y2.
∵兩切線均過定點P(x0,y0),
∴y0=x1x0-y1,y0=x2x0-y2,
由此兩式知點A,B均在直線y0=xx0-y上,
∴直線AB的方程為y0=xx0-y,
即y=x0x-y0.
(3)設點P的坐標為(x′,y′),
由x′-y′-2=0,
得x′=y′+2,
則|AF|·|BF|=·
=·
=·
=(y1+1)·(y2+1)
=y1y2+(y1+y2)+1.

得y2+(2y′-x′2)y+y′2=0,
有y1+y2=x′2-2y′,y1y2=y′2,
∴|AF|·|BF|=y′2+x′2-2y′+1
=y′2+(y′+2)2-2y′+1
=22+,
當y′=-,x′=時,
即P時,|AF|·|BF|取得最小值.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖;.已知橢圓C:的離心率為,以橢圓的左頂點T為圓心作圓T:設圓T與橢圓C交于點M、N.

(1)求橢圓C的方程;
(2)求的最小值,并求此時圓T的方程;
(3)設點P是橢圓C上異于M,N的任意一點,且直線MP,NP分別與軸交于點R,S,O為坐標原點. 試問;是否存在使最大的點P,若存在求出P點的坐標,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設拋物線的焦點為,點,線段的中點在拋物線上. 設動直線與拋物線相切于點,且與拋物線的準線相交于點,以為直徑的圓記為圓
(1)求的值;
(2)證明:圓軸必有公共點;
(3)在坐標平面上是否存在定點,使得圓恒過點?若存在,求出的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

,分別是橢圓的左、右焦點,過作傾斜角為的直線交橢圓,兩點, 到直線的距離為,連接橢圓的四個頂點得到的菱形面積為.
(1)求橢圓的方程;
(2)已知點,設是橢圓上的一點,過兩點的直線軸于點,若, 求的取值范圍;
(3)作直線與橢圓交于不同的兩點,,其中點的坐標為,若點是線段垂直平分線上一點,且滿足,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知橢圓C:+y2=1(a>1)的上頂點為A,離心率為,若不過點A的動直線l與橢圓C相交于P,Q兩點,且·=0.

(1)求橢圓C的方程.
(2)求證:直線l過定點,并求出該定點N的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率相等. 直線與曲線交于兩點(的左側),與曲線交于兩點(的左側),為坐標原點,
(1)當=,時,求橢圓的方程;
(2)若,且相似,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓過點,離心率為.
(1)求橢圓的方程;
(2)求過點且斜率為的直線被橢圓所截得線段的中點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線y=﹣x2上的點到直線4x+3y﹣8=0距離的最小值是( 。
A.B.C.D.3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓C=1(ab>0)的左、右焦點分別是F1、F2,離心率為,過F1且垂直于x軸的直線被橢圓C截得的線段長為1.
(1)求橢圓C的方程;
(2)點P是橢圓C上除長軸端點外的任一點,過點P作斜率為k的直線l,使得l與橢圓C有且只有一個公共點.設直線PF1,PF2的斜率分別為k1,k2.若k≠0,試證明為定值,并求出這個定值.

查看答案和解析>>

同步練習冊答案