如圖,已知橢圓C:+y2=1(a>1)的上頂點(diǎn)為A,離心率為,若不過點(diǎn)A的動直線l與橢圓C相交于P,Q兩點(diǎn),且·=0.

(1)求橢圓C的方程.
(2)求證:直線l過定點(diǎn),并求出該定點(diǎn)N的坐標(biāo).
(1) +y2=1   (2)見解析
(1)依題意有
故橢圓C的方程為:+y2=1.
(2)由·=0,知AP⊥AQ,從而直線AP與坐標(biāo)軸不垂直,由A(0,1)可設(shè)直線AP的方程為y=kx+1,直線AQ的方程為y=-x+1(k≠0).
將y=kx+1代入橢圓C的方程+y2=1并整理得:(1+3k2)x2+6kx=0,
解得x=0或x=-,
因此P的坐標(biāo)為(-,-+1),
即(-,),
將上式中的k換成-,得Q(,).
直線l的方程為y=(x-)+,化簡得直線l的方程為y=x-,
因此直線l過定點(diǎn)N(0,-).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:+=1(a>b>0)的離心率為,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線x-y+=0相切,過點(diǎn)P(4,0)且不垂直于x軸直線l與橢圓C相交于A、B兩點(diǎn).
(1)求橢圓C的方程;
(2)求·的取值范圍;
(3)若B點(diǎn)關(guān)于x軸的對稱點(diǎn)是E,證明:直線AE與x軸相交于定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓:的離心率,原點(diǎn)到過點(diǎn),的直線的距離是.
(1)求橢圓的方程;
(2)若橢圓上一動點(diǎn)關(guān)于直線的對稱點(diǎn)為,求 的取值范圍;
(3)如果直線交橢圓于不同的兩點(diǎn),且都在以為圓心的圓上,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知分別是橢圓的左、右焦點(diǎn).
(1)若是第一象限內(nèi)該橢圓上的一點(diǎn),,求點(diǎn)的坐標(biāo);
(2)設(shè)過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn),且為銳角(其
為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的焦點(diǎn)為F,過F作直線交拋物線于A、B兩點(diǎn),設(shè)(  )
A.4       B.8       C.       D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線C頂點(diǎn)為原點(diǎn),其焦點(diǎn)F(0,c)(c>0)到直線l:x-y-2=0的距離為,設(shè)P為直線l上的點(diǎn),過點(diǎn)P作拋物線C的兩條切線PA,PB,其中A,B為切點(diǎn).
(1)求拋物線C的方程;
(2)當(dāng)點(diǎn)P(x0,y0)為直線l上的定點(diǎn)時,求直線AB的方程;
(3)當(dāng)點(diǎn)P在直線l上移動時,求|AF|·|BF|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓M=1(ab>0)的短半軸長b=1,且橢圓上一點(diǎn)與橢圓的兩個焦點(diǎn)構(gòu)成的三角形的周長為6+4.
(1)求橢圓M的方程;
(2)設(shè)直線lxmyt與橢圓M交于A,B兩點(diǎn),若以AB為直徑的圓經(jīng)過橢圓的右頂點(diǎn)C,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C=1(ab>0)的離心率為,其左、右焦點(diǎn)分別是F1、F2,過點(diǎn)F1的直線l交橢圓CE、G兩點(diǎn),且△EGF2的周長為4.
(1)求橢圓C的方程;
(2)若過點(diǎn)M(2,0)的直線與橢圓C相交于兩點(diǎn)A、B,設(shè)P為橢圓上一點(diǎn),且滿足t (O為坐標(biāo)原點(diǎn)),當(dāng)||<時,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線y2=4x上的點(diǎn)A到其焦點(diǎn)的距離是6,則點(diǎn)A的橫坐標(biāo)是            (    )
A.5B.6C.7D.8

查看答案和解析>>

同步練習(xí)冊答案