【題目】如圖,已知點,,拋物線的焦點為線段中點.
(1)求拋物線的方程;
(2)過點的直線交拋物線于兩點,,過點作拋物線的切線,為切線上的點,且軸,求面積的最小值.
【答案】(1);(2).
【解析】
1由已知得焦點,所以,從而求出拋物線C的方程;
2設,,,設直線l方程為:,與拋物線方程聯(lián)立,利用求得,所以直線l的方程為:,由,求得點M的坐標,進而求出點N的坐標,所以設直線AB的方程為:,與拋物線方程聯(lián)立,設直線l方程為:,利用韋達定理代入,利用基本不等式即可求出面積的最小值.
(1)由已知得焦點的坐標為,
,
拋物線的方程為:;
(2)設直線的方程為:,設,,,
聯(lián)立方程,消去得:,
,,,
設直線方程為:,
聯(lián)立方程,消去得:,
由相切得:,,
又,,
,
,
直線的方程為:,
由,得,,
將代入直線方程,解得,
所以
,
又,
所以,當且僅當時,取到等號,
所以面積的最小值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知為坐標原點,橢圓的右焦點為,過的直線與相交于兩點,點滿足.
(1)當的傾斜角為時,求直線的方程;
(2)試探究在軸上是否存在定點,使得為定值?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學使用某品牌暖水瓶,其內(nèi)膽規(guī)格如圖所示.若水瓶內(nèi)膽壁厚不計,且內(nèi)膽如圖分為①②③④四個部分,它們分別為一個半球、一個大圓柱、一個圓臺和一個小圓柱體.若其中圓臺部分的體積為,且水瓶灌滿水后蓋上瓶塞時水溢出.記蓋上瓶塞后,水瓶的最大盛水量為,
(1)求;
(2)該同學發(fā)現(xiàn):該品牌暖水瓶盛不同體積的熱水時,保溫效果不同.為了研究保溫效果最好時暖水瓶的盛水體積,做以下實驗:把盛有最大盛水量的水的暖水瓶倒出不同體積的水,并記錄水瓶內(nèi)不同體積水在不同時刻的水溫,發(fā)現(xiàn)水溫(單位:℃)與時刻滿足線性回歸方程,通過計算得到下表:
倒出體積 | 0 | 30 | 60 | 90 | 120 |
擬合結果 | |||||
倒出體積 | 150 | 180 | 210 | … | 450 |
擬合結果 | … |
注:表中倒出體積(單位:)是指從最大盛水量中倒出的那部分水的體積.其中:
令.對于數(shù)據(jù),可求得回歸直線為,對于數(shù)據(jù),可求得回歸直線為.
(。┲赋的實際意義,并求出回歸直線的方程(參考數(shù)據(jù):);
(ⅱ)若與的交點橫坐標即為最佳倒出體積,請問保溫瓶約盛多少體積水時(盛水體積保留整數(shù),且取3.14)保溫效果最佳?
附:對于一組數(shù)據(jù),其回歸直線中的斜率和截距的最小二乘估計分別為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在中,,.已知分別是的中點.將沿折起,使到的位置且二面角的大小是60°,連接,如圖:
(1)證明:平面平面
(2)求平面與平面所成二面角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: (a>b>0),四點P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點在橢圓C上.
(1)求C的方程;
(2)設直線l不經(jīng)過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為–1,證明:l過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學從甲乙兩個教師所教班級的學生中隨機抽取100人,每人分別對兩個教師進行評分,滿分均為100分,整理評分數(shù)據(jù),將分數(shù)以10為組距分成6組:,,,,,.得到甲教師的頻率分布直方圖,和乙教師的頻數(shù)分布表:
乙教師分數(shù)頻數(shù)分布表 | |
分數(shù)區(qū)間 | 頻數(shù) |
3 | |
3 | |
15 | |
19 | |
35 | |
25 |
(1)在抽樣的100人中,求對甲教師的評分低于70分的人數(shù);
(2)從對乙教師的評分在范圍內(nèi)的人中隨機選出2人,求2人評分均在范圍內(nèi)的概率;
(3)如果該校以學生對老師評分的平均數(shù)是否大于80分作為衡量一個教師是否可評為該年度該校優(yōu)秀教師的標準,則甲、乙兩個教師中哪一個可評為年度該校優(yōu)秀教師?(精確到0.1)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在頂角為圓錐內(nèi)有一截面,在圓錐內(nèi)放半徑分別為的兩個球與圓錐的側(cè)面、截面相切,兩個球分別與截面相切于,則截面所表示的橢圓的離心率為( )
(注:在截口曲線上任取一點,過作圓錐的母線,分別與兩個球相切于點,由相切的幾何性質(zhì)可知,,,于是,為橢圓的幾何意義)
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義在的偶函數(shù),且.當時,,若方程有300個不同的實數(shù)根,則實數(shù)m的取值范圍為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com