【題目】在中,,.已知分別是的中點.將沿折起,使到的位置且二面角的大小是60°,連接,如圖:
(1)證明:平面平面
(2)求平面與平面所成二面角的大小.
【答案】(1)證明見解析(2)45°
【解析】
(1)設(shè)的中點為,連接,設(shè)的中點為,連接,,從而即為二面角的平面角,,推導(dǎo)出,從而平面,則,即,進而平面,推導(dǎo)四邊形為平行四邊形,從而,平面,由此即可得證.
(2)以B為原點,在平面中過B作BE的垂線為x軸,BE為y軸,BA為z軸建立空間直角坐標(biāo)系,利用向量法求出平面與平面所成二面角的大小.
(1)∵是的中點,∴.
設(shè)的中點為,連接.
設(shè)的中點為,連接,.
易證:,,
∴即為二面角的平面角.
∴,而為的中點.
易知,∴為等邊三角形,∴.①
∵,,,∴平面.
而,∴平面,∴,即.②
由①②,,∴平面.
∵分別為的中點.
∴四邊形為平行四邊形.
∴,平面,又平面.
∴平面平面.
(2)如圖,建立空間直角坐標(biāo)系,設(shè).
則,,,,
顯然平面的法向量,
設(shè)平面的法向量為,,,
∴,∴.
,
由圖形觀察可知,平面與平面所成的二面角的平面角為銳角.
∴平面與平面所成的二面角大小為45°.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某建材商場國慶期間搞促銷活動,規(guī)定:如果顧客選購物品的總金額不超過600元,則不享受任何折扣優(yōu)惠;如果顧客選購物品的總金額超過600元,則超過600元部分享受一定的折扣優(yōu)惠,折扣優(yōu)惠按下表累計計算.
某人在此商場購物獲得的折扣優(yōu)惠金額為30元,則他實際所付金額為____元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從盛滿2升純酒精的容器里倒出1升純酒精,然后填滿水,再倒出1升混合溶液后又用水填滿,以此繼續(xù)下去,則至少應(yīng)倒 次后才能使純酒精體積與總?cè)芤旱捏w積之比低于10%.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個相關(guān)的問題:將1到2020這2020個自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個數(shù)列,則該數(shù)列各項之和為( )
A.56383B.57171C.59189D.61242
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點,,拋物線的焦點為線段中點.
(1)求拋物線的方程;
(2)過點的直線交拋物線于兩點,,過點作拋物線的切線,為切線上的點,且軸,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,四邊形ABCD為平行四邊形,且,,平面PAC.
(1)求證:平面;
(2)若異面直線PC與AD所成的角為30°,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體的棱長為1,P是空間中任意一點,下列正確命題的個數(shù)是( )
①若P為棱中點,則異面直線AP與CD所成角的正切值為;
②若P在線段上運動,則的最小值為;
③若P在半圓弧CD上運動,當(dāng)三棱錐的體積最大時,三棱錐外接球的表面積為;
④若過點P的平面與正方體每條棱所成角相等,則截此正方體所得截面面積的最大值為
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點,且與內(nèi)切,設(shè)的圓心的軌跡為,
(1)求軌跡C的方程;
(2)設(shè)直線不經(jīng)過點且與曲線交于點兩點,若直線與直線的斜率之積為,判斷直線是否過定點,若過定點,求出此定點的坐標(biāo),若不過定點,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com