【題目】對于函數(shù),若存在,使成立,則稱的不動點.已知函數(shù) .

1)當時,求函數(shù)的不動點;

2)若對任意實數(shù),函數(shù)恒有兩個相異的不動點,求的取值范圍;

3)在(2)的條件下,若的兩個不動點為,且,求實數(shù)的取值范圍.

【答案】(1)-1、4為的不動點;(2);(3.

【解析】

1)根據(jù)不動點定義得到方程,解方程求得結果;(2)將問題轉化為恒有兩個不等實根,利用判別式得到滿足的不等式,將其看做關于的二次函數(shù),可知當時,函數(shù)取最小值,從而得到關于的不等式,求解得到結果;(3)利用已知得到,根據(jù)對號函數(shù)的性質求得最值即可得到所求范圍.

(1)由題意知:

為不動點,因此

解得:

所以的不動點.

(2)因為恒有兩個不動點

恒有兩個不等實根

整理為: 恒成立

即對于任意,恒成立

,則

,解得:

(3)

,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線(b>a>0),O為坐標原點,離心率,點在雙曲線上.

(1)求雙曲線的方程;

(2)若直線與雙曲線交于P、Q兩點,且.|OP|2+|OQ|2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=3x,f(a+2)=27,函數(shù)g(x)·2ax-4x的定義域為[0,2].

(1)a的值;

(2)若函數(shù)g(x)[0,2]上單調遞減,λ的取值范圍;

(3)若函數(shù)g(x)的最大值是,λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四面體的頂點和各棱中點共有10個點,在其中任取4個不共面的點,不同的取法有__用數(shù)字作答

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知矩陣A的逆矩陣A1=( ).
(1)求矩陣A;
(2)求矩陣A1的特征值以及屬于每個特征值的一個特征向量.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C:x2+2y2=4,
(1)求橢圓C的離心率
(2)設O為原點,若點A在橢圓C上,點B在直線y=2上,且OA⊥OB,求直線AB與圓x2+y2=2的位置關系,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】市某機構為了調查該市市民對我國申辦年足球世界杯的態(tài)度,隨機選取了位市民進行調查,調查結果統(tǒng)計如下:

支持

不支持

總計

男性市民

女性市民

總計

(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;

(2)能否在犯錯誤的概率不超過的前提下認為支持申辦年足球世界杯與性別有關?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)=|x+1|+|2x+a|的最小值為3,則實數(shù)a的值為(
A.5或8
B.﹣1或5
C.﹣1或﹣4
D.﹣4或8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列有關線性回歸分析的四個命題:

①線性回歸直線必過樣本數(shù)據(jù)的中心點();

②回歸直線就是散點圖中經(jīng)過樣本數(shù)據(jù)點最多的那條直線;

③當相關性系數(shù)時,兩個變量正相關;

④如果兩個變量的相關性越強,則相關性系數(shù)就越接近于

其中真命題的個數(shù)為( 。

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

同步練習冊答案