【題目】直線a與平面所成角的為30o,直線b在平面內(nèi),且與b異面,若直線a與直線b所成的角為,則( )
A. 0<≤30 B. 0<≤90 C. 30≤≤90 D. 30≤≤180
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講設(shè)函數(shù)
(1)當(dāng)時,解不等式:;
(2)若關(guān)于x的不等式f(x)≤4的解集為[﹣1,7],且兩正數(shù)s和t滿足,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:,若橢圓:,則稱橢圓與橢圓 “相似”.
(1)求經(jīng)過點,且與橢圓: “相似”的橢圓的方程;
(2)若,橢圓的離心率為,在橢圓上,過的直線交橢圓于,兩點,且.
①若的坐標(biāo)為,且,求直線的方程;
②若直線,的斜率之積為,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知直角梯形ABCD中,,AB//DC,AB⊥AD,E為CD的中點,沿AE把△DAE折起到△PAE的位置(D折后變?yōu)?/span>P),使得PB=2,如圖2.
(Ⅰ)求證:平面PAE⊥平面ABCE;
(Ⅱ)求點B到平面PCE的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).在極坐標(biāo)系(與平面直角坐標(biāo)系取相同的長度單位,且以原點為極點,以軸非負半軸為極軸)中,直線的方程為.
(1)求曲線的普通方程及直線的直角坐標(biāo)方程;
(2)設(shè)是曲線上的任意一點,求點到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線,,為拋物線的焦點,是拋物線上兩點,線段的中垂線交軸于,,。
(Ⅰ)證明:是的等差中項;
(Ⅱ)若,為平行于軸的直線,其被以AD為直徑的圓所截得的弦長為定值,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,圓:,圓:.以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.
(1)求,的極坐標(biāo)方程;
(2)設(shè)曲線:(為參數(shù)且),與圓,分別交于,,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱中,且,是棱上的動點,是的中點.
(1)當(dāng)是中點時,求證:平面;
(2)在棱上是否存在點,使得平面與平面所成銳二面角為,若存在,求的長,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解甲、乙兩種產(chǎn)品的質(zhì)量,從中分別隨機抽取了10件樣品,測量產(chǎn)品中某種元素的含量(單位:毫克),如圖所示是測量數(shù)據(jù)的莖葉圖.規(guī)定:當(dāng)產(chǎn)品中的此中元素的含量不小于18毫克時,該產(chǎn)品為優(yōu)等品.
(1)試用樣品數(shù)據(jù)估計甲、乙兩種產(chǎn)品的優(yōu)等品率;
(2)從乙產(chǎn)品抽取的10件樣品中隨機抽取3件,求抽到的3件樣品中優(yōu)等品數(shù)的分布列及其數(shù)學(xué)期望;
(3)從甲產(chǎn)品抽取的10件樣品中有放回地隨機抽取3件,也從乙產(chǎn)品抽取的10件樣品中有放回地隨機抽取3件;抽到的優(yōu)等品中,記“甲產(chǎn)品恰比乙產(chǎn)品多2件”為事件,求事件的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com